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Abstract

In this thesis I set out to create a Sphero Multi Swarm System. To be better at
recognizing the success of this I asked four leading questions. Is it even possible
to create swarm behaviour with Sphero robots? Does it work in a tight corridor?
Is it possible for two swarms to interact with one another? Does it still work in
with tight corridors? In order to achieve this goal I first had to create a concept
which would be able to do that.

For that I needed to be able to track multiple robots, make them move towards a
goal and create swarm behaviour. For that I used several ROS implementations.
A CNN based detection for the tracking, an EKF to remove wrong detections, the
Navigation stack for the path finding and several swarm formulas for my swarm
behaviour. This was created and tested in the swarmlab with the Sphero robots.

The evaluation confirmed that it was possible for the majority of my questions.
However specific problems with the tracking and path finding became apparent
which made it fail for the last question. The failed tracking was also due to failed
implementation of the EKF. Additionally Bluetooth connectivity of the Sphero
robots made it only possible for six different Sphero robots to work at the same
time. This opens up the direction future works should take.
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1
Introduction and Motivation

1.1 Motivation

The Sphero robot was the first kind of robot I actively programmed for.

After being able to create movement it has been my goal to create some

kind of Swarm behaviour. So it is my pleasure to see if I am able to create

it.

Furthermore having interactions between two swarms is not yet promi-

nent in the research field. So it has some interesting possibilities. It could

be useful if you want to create sub swarms from a bigger swarm to do their

own task without intervening with each other.

1.2 Aim of this thesis

It is my goal to create two different swarms consisting of Sphero robots.

These two different swarms should be able to interact with one another.

In order to test if I am able to do this, I will try to answer the following four

questions:

1. Is it possible to create swarm behaviour with Sphero robots?

2. Can I create swarm behaviour with my Sphero robots in a tight corri-

dor?

3. Is is possible to create two Sphero swarms which interact with one

another?

4. Is it possible to create two Sphero swarms which interact with one

another where both are contained in a separate tight corridor?

1



2 CHAPTER 1. INTRODUCTION AND MOTIVATION

1.3 Structure of this thesis

In this thesis I will first talk about some related work in chapter 2. Here I’m

trying to create an understanding of other works that will be needed for

my own methods to work.

Following this will be the methods I used 3. Here I will explain everything

that is necessary for me to create my own swarm behaviour.

Then I will test and evaluate if my methods actually worked 4.

After everything is done I arrive at my conclusion 5 whether I achieved

what I set out to do or not. I will also specify some future work that can be

done.



2
Related Work

2.1 Sphero and ROS

The Sphero is a small ball shaped robot with inbuilt odometer and an Iner-

tial Measurement Unit a so called IMU. It has a differential drive and a low

friction. In addition to that the Sphero possesses a bluetooth low energy

interface. SPHERO (2022)

Thanks to that we can establish communication between the Sphero and

another device be it a computer or a mobile phone.

There exist many different variants of Sphero robots. The one I am us-

ing is the so called SPRK+. For a better usage of the Sphero we use the

Robot Operating System i.e. ROS. It is a node based system where each

node can publish and subscribe to topics which contains specific informa-

tion. JOSEPH (2017) Our entire system is running with different ROS nodes.

What makes ROS great is also the possibility to either start a node as is or

start it with a launch file where you can determine different variables and

to start more than a single node at a time.

In Figure 2.2 I’m showing an example of what a possible ROS integration

is looking like. Here I’m running a single Sphero robot with its naviga-

tion and tracking enabled. This shows how the different nodes interact

with each other as not every node needs to communicate with every other

node. It also becomes apparent that the Bluetooth communication is not

working with ROS but is rather dealt with individually before the so called

"Sphero node" brings the ROS integration.

3
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Figure 2.1: Example of my Sphero SPRK+ robots
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Figure 2.2: Example of running nodes with a Sphero robot
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2.2 ROS Navigation Stack

To get an accurate Navigation which is intertwined with the ROS system I

am using the Navigation stack also called navstack for short. For that to

work it is only needed to provide odometry, sensor data if available and a

goal pose in a provided costmap. If everything is correctly provided it gives

you command velocities which will eventually reach the goal provided the

given data is correct. Another prerequisite according to GUIMARÃES et al.

(2016) is not only ROS but also a tf transformation tree. In addition it needs

to be configured for the specific robot it is used for. This has to be done for

it to work at a high level.

There are also some hardware requirements the robot needs to have ac-

cording to LARRIBE (2020-09-14).

1. The robot needs to have either a differential drive or be holonomic

wheeled and needs to be able to work with command velocities in

the form of x velocity, y velocity, theta velocity.

2. It needs a mounted laser for map building and localisation

3. Works best for either square or circular shaped robots

However the need for a laser can be disregarded if you have some other

kind of localisation as well as a known static map.

The actual path finding is calculated in the base local planner which is

part of the navstack. Here we have a choice of two different algorithms,

the Trajectory Rollout and the Dynamic Window Approach.

Both algorithms follow the same basic idea according to VARAS (2019-04-

04):

1. Discretely sample in the robot’s control space (dx,dy,dtheta)

2. For each sampled velocity, perform forward simulation from the

robot’s current state to predict what would happen if the sampled

velocity were applied for some (short) period of time.

3. Evaluate (score) each trajectory resulting from the forward simula-

tion, using a metric that incorporates characteristics such as: prox-

imity to obstacles, proximity to the goal, proximity to the global path,
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and speed. Discard illegal trajectories (those that collide with obsta-

cles).

4. Pick the highest-scoring trajectory and send the associated velocity

to the mobile base.

5. Rinse and repeat.

The only difference of DWA and Trajectory Rollout is how they do the very

first step. The Trajectory Rollout samples the velocities over the entire sim-

ulation while the DWA only samples it from one simulation step. Both

need the acceleration limit of the robot to be able to do that. This means

that DWA is more efficient for robots with a higher acceleration limit.

For a robot to be able to move in an environment a map and a costmap

is needed. The map consists of three different states. It can be free space,

occupied space or unknown space. In comparison to that the costmap can

have a value between 0 and 255. Thus if you depending on your threshold

it will correlate to on of the three map states. In this map the color of each

pixel describes whether or not the corresponding cell is occupied.

Now the color of the pixel can be interpreted in three different ways

1. Trinary: if the pixel has any other color than white the cell is occu-

pied

2. Scale: this can give you a value between 0 and 100

3. Raw: will output a value between 0 and 255

2.3 Kalman Filter

In order to get an accurate measure of the Spheros position we need to fil-

ter the received position messages from the camera. To do that I decided

to use the Extended Kalman Filter. An extended Kalman Filter is an exten-

sion of the normal Kalman Filter. The Kalman Filter gives a linear estimate

about a mean and covariances about a current position. The extended

Kalman Filter gives us a nonlinear estimation.

xk = f (xk−1,uk )+wk (2.1)
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zk = h(xk )+ vk (2.2)

The formula 2.1 describes the state transition where wk is process noise

and uk is a control vector. Folloing this the formula 2.2 describes the ob-

servation model where vk is the observation noise.

The workings of an EKF can be roughly divided into two main cycles:

1. Predict

2. Update

If we go through both cycles of the EKF it does the following according to

RIBEIRO (2004):

1. Consider the last filtered state estimate

2. Linearise the system dynamics

3. Apply the prediction step to the linearised system

4. Linearise the observation dynamics

5. Apply the update cycle to the linearised observation dynamics

At the end of these steps we attain our nonlinear estimate which can be

used for localisation.

2.4 Transformations

One prerequisite of the navstack is the usage of the tf tree. TF is a ROS

package that lets you track different coordinate frames over time. It also

keeps track of their relationship in a tree like structure according to FOOTE

(2013). This tree like structure also defines the hierarchy of the robot parts.

Additionally this makes it possible to transform vectors between the differ-

ent frames. In addition to that you can create queries to check your current

pose in a map frame.

You can also do other things with this package like rotating, reflecting,

scaling, shearing, projecting, orthogonalizing according to GOHLKE (2009).
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Another useful function is the conversion between rotation matrices, euler

angles and quaternions.

2.5 Camera Tracking

There exist many methods for an accurate localisation inside a specific

area. In my case I will rely on a camera based tracking which is based on

HOYER et al..

As can be seen in Figure 2.3 the detection process is divided into two parts.

The first part is basically a common object detection method which is why

this method is so much better. After that it samples down the image and

uses a CNN object detection to returns a type of robot and a bounding box

back. HOYER et al. (2018). Following this it uses that data for the second

stage. Here it takes the high resolution image and crops it down to the

bounding box. Now for the second part the idea is that it uses a specifi-

cally trained neural network for the detected robot type. With this we get

a position, an ID and an Orientation for our robot.

The CNNs can be trained with enough pictures meaning you can easily

use any kind of robot. It is only necessary to create a new bounding box

for a new robot. This makes it very easy to track new robots.

The training data acquisition can be divided into two steps. First there

is the compositor. It is an algorithm which superimposes robot crops on

background images with a random scale. HOYER et al. (2018) This creates

a massive amount of data which can be used as it can contain multiple

robots in different orientations. It also balances out all the important fac-

tors like the background type, robot type and id patterns. This will give us

the necessary data that is then stored as a ground truth. Secondly there

is the robot crops. These are essential for quality and the final data. For

that to work these crops need to be without any visual background infor-

mation.

2.6 Swarm Behaviour

A swarm is a conglomeration of different agents moving with a greater pur-

pose and not just individually.
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Figure 2.3: Architecture of the robot localization framework consisting of two
stages. Adopted from HOYER et al. (2018)

According to Reynolds there exist three main criteria which every swarm

follows: REYNOLDS (1987)

1. Cohesion: The need to move towards the center of local swarm mem-

bers

2. Alignment: The need to steer towards the average orientation of your

swarm

3. Separation: The need to avoid colliding with your fellow members

There are many real life examples of swarms. The most known ones are

Ants, which are communicating via pheromones and are thus able to

achieve many different things for the whole swarm. Otherwise Bees and

Termites are known as swarm animals. Birds while flying in formation are

well known swarm animals as well.

Through these real life examples it is possible to imitate their behaviour

with robots.

To formulate an implementation of this behaviour there is this formula

after MOSTAGHIM (2022).

fi,j =−(xi −xj)( fat tr acti on − fr epul si on) (2.3)

There are three main ways to formulate an attraction and repulsion func-

tion:

far1 = fa1 − fr1 =α− b∣∣∣∣xi −xj
∣∣∣∣2 (2.4)

far2 = fa2 − fr2 =
α∣∣∣∣xi −xj

∣∣∣∣ − β∣∣∣∣xi −xj
∣∣∣∣2 (2.5)
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far3 = fa3 − fr3 =α−β ·e−
||xi−xj||2

γ (2.6)

α,β,γ are parameters which need to be chosen.

xi , x j are members of the swarm.

These three attraction and repulsion functions while similar have different

types of attraction and repulsion. In formula 1 2.4 it is a linear bounded

attraction and a unbounded repulsion

Compared to the in formula 2 2.5 it is an almost constant attraction and

an unbounded repulsion.

Lastly in formula 3 2.6 it is a linear bounded attraction and an unbounded

repulsion.

Once fr epul si on = fat tr acti on the swarm members have reached their opti-

mal state and stop moving.





3
Methods

3.1 Overview

Now as I talked a bit about the related work for my plan it’s now time to

talk about my used methods.

For that let me give you an overview of my general ideas. On the ground

level I have my arena where my Sphero robots will do their work. As they

use Bluetooth LE to connect to a device I have Bluetooth dongles in my

arena.

To start with I need to track my Sphero robots so I use a camera which is

placed in the ceiling. Thanks to that I get an accurate view of everything.

Thus I can use my trained CNNs to track my Sphero robots. As I get posi-

tion data, an orientation and an id I can use an EKF to filter out bad data

of my tracking. With this filtered data I can use my navstack for my path

finding and create a swarm behaviour as they rely on position data to func-

tion.

My swarm behaviour is based on an irregular time step and will only send

new goals once the last goal has been reached. Once my Sphero robots

start their movement, my tracking continues and thus creating a cycle.

This is visualized in my Figure 3.1.

3.2 Usage of my Camera Tracking

To correctly identify a Sphero robot I decided to use a camera based track-

ing as described in my related works. But before that is possible I need

to create an rectified image from my raw camera image. For that I also

use a standard ROS package image proc. In order to do that I created a

13
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Figure 3.1: Interplay between my methods

new training set based on my Sphero robots. For that I trained my CNNs

with 30000 pictures and later tested it with 3000. According to the test I

achieved a 98 % accuracy to correctly identify the id and a 90 % accuracy

to get a correct orientation.

Now with my correctly trained CNN it is possible to correctly track my

Sphero robots. It does that with colors as IDs and gives me an Orienta-

tion. I trained the following ID: dark blue,dark red, dark green, green, blue,

red, yellow, blue green, magenta, purple, lime green, orange, light green and

light blue.

3.3 Path Finding

Now with a correct tracking I am using the navstack for my path finding.

As I am getting good position data from the camera I need to create a visual

odometry to further work with that.

I receive all the data I need so that is not a problem. Now I just need to

publish transformations and the navstack can start its work.
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For the path finding I decided to use the base local planner which is in-

cluded in the navstack. As for the algorithm I decided to use the Trajectory

Rollout which works as described in my Related Work under ROS Naviga-

tion stack.

3.4 Robot Pose EKF

To get an even better localisation I decided to use an EKF. For that I found

a premade ROS Package Robot Pose EKF. Upon closer inspection of the

code I found out that it was not possible to change the system noise. To

rectify that I made that a variable which is changeable as a ROS parameter,

meaning it is easily changeable in a launch file.

This package needs a particular set of parameters to work in a ROS envi-

ronment. It needs to get an odometry of your robot, a visual odometry

and IMU data. Theoretically it only needs either the odometry or the vi-

sual odometry to filter the data but in that case it is not as accurate.

Additionally it absolutely needs to get covariance matrices of your robot

otherwise it will not work. This can pose a problem as you need to know

the covariances of your robot otherwise you will never get a correct result.

A covariance matrix is a 6x6 matrix where the diagonal corresponds to lin-

ear x, linear y, linear z, angular x, angular y, angular z

If you make your covariances to small the robot will simply never move

from it’s position no matter what. However if you do the opposite and

those values that are too big the positions of your robot will simply con-

verge even if the actual robot is not moving.

Lastly it also asks for your base frame and the output frame where it will

publish its results.

3.5 Multi Swarm Behaviour

Now I get to my main problem of creating swarm behaviour. For that I use

multiple Sphero robots with different colors to create a swarm.

There are a few methods to create swarm behaviour ,in my case I chose

the known swarm formula 3 2.6 as described in my related work as my
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attraction and repulsion function. Additionally the main formula needs to

be used as well 2.3.

Now if we look at this formula 2.6 it is obvious that it describes the at-

traction and repulsion between two robot agents. α describes the linear

attraction and the second part of the formula describes the unbounded

repulsion between both agents. In order for this to work this needs to be

calculated for every member of the swarm and added together.

Due to the nature of my setup I decided to use a different route based on

the following paper GASPARRI et al. (2012) where they issued commands

by a remote station and validated their findings.

Instead of every single robot calculating their attraction and repulsion

with every single other robot in their swarm I decided to to it a little dif-

ferently. I first calculate the center of my swarm based on every robot 3.1

and then calculate the attraction and repulsion based on the robot I am

calculating it for and the center of the swarm. 3.2

x̄ = 1

n

n∑
i=0

xi (3.1)

fi =α−β ·e−(||xi−x̄||2) (3.2)

α,β are parameters which need to be chosen.

xi is a member of the swarm.

x̄ is the center of the swarm.

Now the formula just needs to be added as an attraction and repulsion

function to 2.3. But except for a swarm member xj we have the center of

the swarm x̄ .

With this I am ready to have swarm behaviour for one swarm. Now if I

have a second swarm I can also use this but there is still is no interaction

between both different swarms.

As a possible interaction some kind of repulsion between both swarms

comes to mind immediately.

So for this I decide to create a repulsion between a member of a swarm and

the center of the second swarm. This is based on the unbounded repulsion

mentioned in GASPARRI et al. (2012) and MOSTAGHIM (2022) .
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fi = γ

(||xi − x̄e||2)
(3.3)

γ is a parameter which needs to be chosen.

x̄e is the center of the enemy swarm.

To create an interaction I just need to once again calculate with this as the

repulsion an 0 as the attraction in 2.3 . But except for a swarm member xj

we have the center of the enemy swarm x̄e .

So if all these forces get added together I should have a successful swarm

behaviour. The only thing left to do is to insert values for my parameters

and to test it.





4
Experiments and Evaluation

4.1 Arena

To make experiments and gather useful data we have a arena on the

ground with a 5m · 3m surface. In order to observe the arena we have

installed a pinhole camera in the ceiling. This camera is connected with a

computer so that it is possible to evaluate the video data. To get an accu-

rate world frame we need to get an rectified image from the raw camera

image. I choose to use the standard ROS package image proc to do just

that.

Now I get an accurate image from the arena below which I can use for the

detection. Additionally I needed to calculate the resolution to get accurate

world coordinates.

r esoluti on = r eal wor l dcoor di nates

pi xel coor di nates
(4.1)

As my Arena had a a 5m · 3m surface I calculated a resolution of 0,001696 .

For my path finding I implemented the navstack. I used a static map as

my costmap. Though I changed it depending on which experiment I was

doing. Other than that every single Sphero robot started its navstack oth-

erwise it would not be possible to give out specific commands to them.

Now as I got closer to fulfill my prerequisites it was time to use an EKF.

For that I found two different implementations which both use ROS. The

robot pose EKF and the robot localisation. Considering that implementing

both of them would destroy the scope of my thesis I chose the robot pose

EKF.

19
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Figure 4.1: Arena pictured by the camera above
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The robot pose EKF did not need any other non standard packages which

made it easy to install. However this choice lead to another variety of prob-

lems. As mentioned I had to create a new variable to be able to change the

system noise.

In order for the robot pose EKF to work I needed to give it an odometry, a

visual odometry and some IMU data. This posed a problem for me. Even

though the Sphero robot has an IMU integrated the current implementa-

tion of the Sphero driver is not able to correctly take it from the Sphero

robot.

In addition to that the Bluetooth channels are under a heavy strain if you

use more than one Sphero robot. Because of this I had to use four differ-

ent Bluetooth dongles to get six different Sphero robots to reliably work

without any major issues.

Even then I had to implemented an automatic reconnect should a Sphero

robot lose their connection during their experiments.

So for that reason it only got the visual odometry and a virtual odometry

based on the received command velocities from the navstack to work with.

Theoretically this should be enough but after vigorous testing it became

clear that it simply did not work.

The filtered poses I got from this implementation were simply wrong the

moment my Sphero robots started to move. After three weeks of trying to

get it to work I had to give stop in order to get everything else done.

Thus I could only use the direct tracking which tends to fail should the

Sphero robots get too close to each other.

4.2 Creating Swarm Behaviour for one Swarm

Due to stability issues and problems with the correct tracking I decided to

use three Sphero robots per swarm. I decided o use the following colors for

my first swarm: magenta, dark blue and orange Now what is left is to use a

costmap which describes my arena. 4.2 After fulfilling all the prerequisites

I need, I can start with the main questions. Can I create swarm behaviour

with my Sphero robots?To answer that question I created a simple experi-

ment where I let the center of my swarm move between two Points in my

map. Due to the created swarm behaviour my Sphero robots should strife
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Figure 4.2: Costmap of my arena with no tight corridors

to stay around the center. Therefore I decided to use the following values

for my parameters in formula 3.3. α= 1,β= 0.7 To evaluate this I’m using

three main criteria.

1. Cohesion Entropy of the swarm

2. Alignment Entropy of the swarm

3. Average distance to the center

To get an even better idea I also look at a still swarm and a swarm that was

randomly placed without their behaviour enabled.

To get an average distance to the center I calculate the euclidean distance

of every single member of my swarm to the center and divide by the num-

ber of my swarm members:

d̄ t = 1

n

n∑
i=0

(
∣∣∣∣xi

t − x̄t ∣∣∣∣2
) (4.2)

d̄ t describes the average distance of every member to the center of the

swarm.

xi
t is a member of my Sphero robot swarm over time t.
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Figure 4.3: Cohesion one swarm randomly placed

x̄t is the center of my Sphero robot swarm over time t.

To calculate the entropy for a swarm I use this formula:

Entr opy =
n∑

i=0
−1

i
· log

(
1

i

)
(4.3)

Now if we account for three swarm members we get a maximum and opti-

mal entropy of 1.5849

So with the best Entropy in mind it is clear after looking at Figure 4.3 and

4.4 that a randomly placed swarm, does not get close to the optimum of

1.5849.

It is as expected quite a bit lower in the cohesion with an average of 1.398

and in alignment with 1.534. In addition to that the average distance is

about 0.698 meters as we can see in Figure 4.5 .

We can already see some slight deviance in the results over time. This is a

problem with the detection of the Sphero robots, which is a problem that

follows us through all the collected data.

Even though the Sphero robots are not moving ,their position is slightly dif-

ferent every time. But when inspecting the average distance it is apparent

that the difference is not decisive. These results can be used as an example

of failed swarm behaviour.

In comparison to that if we look at the Figures 4.6 and 4.7 which is the

Cohesion and Alignment entropy of a swarm that is not moving and it’s

swarm behaviour enabled we can see a clear difference.
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Figure 4.4: Alignment one swarm randomly placed

Figure 4.5: Average distance to the middle, one swarm randomly placed
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Figure 4.6: Cohesion one swarm, not moving

Figure 4.7: Alignment one swarm, not moving

Here there is an average cohesion entropy of about 1.5765 and an average

alignment entropy of 1.5843. These results clearly show an optimal state

of our swarm.

Each member of the swarm has reached an equilibrium at an average dis-

tance of 0.222 meters as per Figure 4.8 with my chosen parameters.

With both of these extreme cases in mind it is time to look at the actual

data of my swarm.

Now we get to my actual experiment. Here I move the center of my swarm

between two points in my map. As the swarm behaviour is enabled my

Sphero robots should follow the center and try to regain their equilibrium.

As to not overwhelm the bluetooth connection the Sphero robots only get

a new goal to move to as long as it is:
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Figure 4.8: Average distance to the middle, one swarm, not moving

1. Inside the allowed area of the map

2. The new goal has a distance of at least 0.1 m

3. At least to seconds passed since the last goal

This allows the navstack to create a path for the Sphero robots to follow

and get to the goal point. If I don’t create these restrictions the Sphero

robots will be completely overwhelmed with goal points. At this point the

Sphero robots will simply stay still and not move no matter what.

So these restrictions are needed for anything to happen at all. Now as the

center is moving between two predefined points I calculate my evaluation

criteria.

As shown in Figure 4.9 it becomes clear that for a small moving swarm

of three Sphero robots it stays relatively in the optimal range of cohesion

entropy. In comparison to that the alignment entropy is quite unstable as

shown in Figure 4.10 . It’s ranging between 1.58 and 0.93.

This is easy to explain as every single member of the swarm is trying to

individually follow the moving center and are thus breaking out of their

equilibrium. Sadly the tracking is also slightly responsible for this as the

detection of the orientation is not always accurate and tends to give us a

false orientation every now and then.

The cohesion entropy has some low points with the lowest cohesion en-

tropy at 1.05 at about the 58 seconds mark. If we look at the average dis-

tance in Figure 4.11, it becomes clear that it ranges between the optimum
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Figure 4.9: Cohesion one swarm no tight corridor

0.22 m and 0.97 m. These distances are created due to the amount of time

it takes for a Sphero robot to get a decent route to drive to it’s goal point.

The center of the swarm is taking between 28 to 30 seconds to move be-

tween the two predefined points as shown in Figure 4.12 .

At the mentioned 58 second mark we have a low entropy but a low average

distance. This means that not all members of the swarm are close to each

other and are thus easier to pick out. This makes sense because they are

moving individually to their goal points to get back in their optimal state.

During this movement it tends to lower the entropy.

Now after looking at the data and the way the Sphero robots tried to

achieve an equilibrium with the moving center I can say that for one

swarm it is working. The entropy is staying in a good range with the op-

timal still swarm. There are of course some low entropy points which are

even lower than the randomly placed swarm with 1.1 at the lowest but it

never stayed in that low range and always returned to about 1.4 .

So I can answer my first question stated in 1 with yes!

4.3 Testing in a tight Corridor

After successfully answering the first question I arrive at the second.
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Figure 4.10: Alignment one swarm no tight corridor

Figure 4.11: Average distance to the middle, one swarm no tight corridor
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Figure 4.12: Average time for the center of the swarm to move between two fixed
goal points with no tight corridor

Can I create swarm behaviour with my Sphero robots in a tight corridor?

To test that everything from my first question remains the same except for

the costmap. In this experiment I still move my center between two points

but now my map is considerably smaller as seen in 4.13. After letting ev-

erything run it becomes obvious that even though it is working there are

some problems which were not as prevalent before.

Looking at the cohesion entropy in Figure 4.14 I can conclude that even

though it is quite similar to Figure 4.9 the lowest cohesion entropy is at

0.87 . In addition to that the calculated alignment entropy Figure 4.15 does

also have a lower point at 0.76 . It shows that the entropy is pretty similar

to the experiment with no corridor just slightly worse.

Now if I look at the average distance as shown in Figure 4.15 it is showing

a worse version of the average distance in the previous experiment. The

highest average distance is at about 1.2 m which is 0.2 m higher than the

same experiment without a small corridor. To get a better comparison the

time it takes for the center of the swarm to move between the points is

between 28 to 34 seconds Figure 4.17.
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Figure 4.13: Costmap of my arena with tight corridors
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Figure 4.14: Cohesion one swarm in corridor

So why is everything just a little bit worse in a small space? These worse

data points are relatively easy to explain. In a small space my Sphero

robots are having a harder time to correctly move without hindering one

another. In addition to that when they are getting to close to each other

the tracking is starting to be unable to accurately track them. These inac-

curacies leads to a longer time for my robots to calculate the best path to

follow to its goal point. While this is happening the center of the swarm is

continuing to move and thus we get a higher average distance.

Nevertheless the goal points my robots create are all in line with their

swarm behaviour. And even though it is worse in a small corridor it still

works somewhat. So I conclude this questions with a yes it works in a tight

corridor even though it has problems.

4.4 Creating a second Swarm which interacts

Now I arrive at my third question: Is it possible to create two swarms which

interact with one another?

In order to determine that I change my experiment a little bit. First I once

again use the whole arena 4.2. Additionally I create a second swarm con-

sisting of three Sphero robots and place them in the arena(insert arena

picture?). I give them the following IDs: red, green and blue green. To get

both swarms to interact I place them to the opposite of each other as well

as parallel. Furthermore I give my parameter in formula (6) the following
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Figure 4.15: Alignment one swarm in corridor

Figure 4.16: Average distance to the middle, one swarm in corridor

Figure 4.17: Average time for the center of the swarm to move between two fixed
goal points with no tight corridor
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Figure 4.18: Cohesion two swarms, no corridor, swarm 1

value. γ = 0.2 In my first two experiments I let my swarm center move

from one point to another. Now I do the same for the second swarm so

that both swarms move by each other.

In addition to that I activate the unbounded repulsion for both swarms as

described in my methods. With this I should have created two swarms that

interact with each other. With all these preparations I start to calculate my

evaluation criteria.

4.4.1 Swarm 1 Evaluation

Now as we look at the cohesion entropy in Figure 4.18 it stays quite high

until later where it drops considerably to 0.73 . The same can be said

about the alignment entropy in Figure 4.19 where it has the lowest drop

to roughly 0.2 entropy. Additionally the average distance Figure 4.20 does

not get over 1.2 which is slightly better than one swarm in a small corridor.

As my earlier experiments have shown the time it takes for the center of

the swarm to move between two points is between 28 to 32 seconds.
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Figure 4.19: Alignment two swarms, no corridor, swarm 1

Figure 4.20: Average distance to the middle, two swarms no corridor, swarm 1
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Figure 4.21: Cohesion two swarms, no corridor, swarm 2

4.4.2 Swarm 2 Evaluation

In comparison to that the cohesion entropy of my second swarm does not

drop as low as my first swarm as it’s lowest entropy is about 1.16 as seen in

Figure 4.21 . However the alignment entropy Figure 4.22 shows a similar

low point with 0.43 . Now we have a slightly higher average distance Figure

4.23 high point with 1.45 m which is the highest recorded data point yet.

4.4.3 Conclusion

With these data points I can say that it works only somewhat. Due to the

enabled behaviour all Sphero robots are getting correct goal points how-

ever a few problems are starting to get apparent. With six Sphero robots

in one arena the tracking is getting pushed to its limit. Each Sphero robot

has its own unique color however the tracking starts to have problems to

correctly identify the correct Sphero robot. This sometimes leads to a loss

of location data which delays the movements to their correct goal points.

As the center of each swarm is moving between their goals the higher the

average distance will be. This is why such a relatively high average dis-

tance of 1.4 m can be reached. Furthermore this also explains the strong

low points in their entropy as not all Sphero robots manage to create a

good path towards their goal in a similar amount of time. The actual local
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Figure 4.22: Alignment two swarms, no corridor, swarm 2

Figure 4.23: Average distance to the middle, two swarms ,no corridor, swarm 2
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Figure 4.24: Cohesion two swarms, corridor, swarm 1

planner is also not designed with the Sphero robots in mind which makes

the following of the global path not really possible.

Thus I come to the conclusion that yes it is working somewhat. However

there are many problems which need to be addressed to make it work

properly.

4.5 Testing in two tight Corridors

After the rough results of my last experiment I arrive at my last question:

Is it possible to create two swarms which interact with one another where

both are contained in a tight corridor?

To answer this I once again change my costmap 4.13 so that both swarms

are contained in their small corridors. Everything else remains the same.

4.5.1 Swarm 1

As seen in Figure 4.24 the cohesion entropy stays relative close to 1.55 with

only a few low drops to 0.9 at about 58 seconds.

Furthermore the alignment entropy 4.25 is ranging between the optimum

1.58 and the low point 0.8 .

The average distance as seen in Figure 4.26 is alternating between 0.2 m

and 1.2 m which is roughly the expected distance.
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Figure 4.25: Alignment two swarms, corridor, swarm 1

Figure 4.26: Average distance to the middle, two swarms no corridor, swarm 1
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Figure 4.27: Cohesion two swarms, corridor, swarm 2

4.5.2 Swarm 2

Now for my second swarm we have a cohesion entropy that only drops to

1.32 at about 5 seconds in and other wise stays relatively near the optimum

with only an occasional dip to 1.4 Figure 4.27.

In comparison to that the have the alignment entropy Figure 4.24 which as

always has drops to the low point of 0.8 . However it is much less chaotic

than every other dataset I have reviewed until now. Figure 4.28

Lastly If I look at my average distance I can see a relatively smooth line

going from 0.2 to 1.2 and vice versa. Figure 4.29

4.5.3 Conclusion

If we only look at the entropy of both swarms it looks quite good how-

ever the relatively smooth line of more or less both average distances

disputes that. As the Sphero robots start to move the entropy slightly

dips. However as the different center of both swarms start to get closer

and the unbounded repulsion starts to work, we got a problem as the

Sphero robots start to stand still. This explains the high entropy despite

the Sphero robots getting further away from their swarm center.

In addition to that the tracking continues to be a problem. Especially in

a small corridor it sometimes cannot correctly localise the Sphero robots.

This also leads to a movement stop.
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Figure 4.28: Alignment two swarms, corridor, swarm 2

Figure 4.29: Average distance to the middle, two swarms , corridor, swarm 2
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Thus I must answer that in my implementation it is not possible to have

both swarms interacting with each other in a tight corridor even though

the goal points of my Sphero robots are correct.

Lastly I have to mention that I did not do a stochastic analysis. I did not

have enough time to do all the test for that as the experimentation with

the Sphero robots is quite time consuming. There are two main factors

playing into this which are the connectivity of the Sphero robots and their

battery charge.

If a Sphero robot is moving it takes about 30 minutes before it has to

recharge. The recharging process takes about 45-50 minutes before it has

enough charge for proper experimentation. Additionally I only had nine

working Sphero robots at any time.

Although it can be said that even though I did not do the all tests multi-

ple times, each test was done in the same framework and gave a similar

entropy which can be taken as a hint for a stochastic analysis.





5
Conclusions and Future Work

5.1 Conclusions

After all my experiments I can conclude that I managed to succeed for

the most part. I managed to create a working swarm behaviour for one

swarm of Sphero robots in our arena and somewhat in a small corridor. I

only managed to achieve a somewhat satisfactory interaction between two

swarms in an arena which ceased to work completely in my tight corridor

experiment.

The main problems which lead to this result where mainly the localisation

of my Sphero robots which ceased to work when they got to close to each

other and the correct path finding in the local planner. Whilst my solution

scales in theory it is a big problem with more then six Sphero robots at the

same time due to tracking problems as well as an overwhelmed Bluetooth

connection. Even though my finished tests do not include a stochastic

analysis it is at least possible to see a hint of it due to the same framework

giving similar results.

5.2 Future Work

For possible future work I have three specific things on my mind which

would solve a lot of problems I experienced in my experiments. One pos-

sible avenue would be to create a local planner for the navstack which is

specifically designed with the Sphero robot in mind. This would solve a lot

of the path finding and movement problems. Another possible direction

would be the the complete overhaul of the localisation.

43
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Even though I created a training set and trained it accordingly it was not

enough so it should be further refined to be better. Lastly an different im-

plementation of an EKF filter would help. Be it the newer robot localisa-

tion node from ROS or a new implementation of an EKF filter it would

help a lot with the localisation.

Further tests with an actual stochastic analysis should also be considered.



A
Abbreviations and Notations

Dataset and clustering acronyms

Acronym Meaning

IMU inertial measurement unit

ROS Robot Operating System

navstack Navigation Stack

tf Transformations

EKF Extended Kalman Filter

CNN convolutional neural networks

DWA Dynamic Window Approach
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