
Carlo Nübel

Match Point AI: A Novel
Reinforcement Learning
Framework for Evaluating
Data-Driven Tennis Strategies

Intelligent Cooperative Systems
Computational Intelligence

Match Point AI: A Novel Reinforcement
Learning Framework for Evaluating Data-Driven

Tennis Strategies

Master Thesis

Carlo Nübel

March 11, 2024

Supervisor: Prof. Dr.-Ing. habil. Sanaz Mostaghim

Advisor: Dr.-Ing. Christoph Steup

Advisor: Sebastian Mai, M.Sc.

Carlo Nübel: Match Point AI: A Novel Reinforcement Learning
Framework for Evaluating Data-Driven Tennis Strategies
Otto-von-Guericke Universität
Intelligent Cooperative Systems
Computational Intelligence
Magdeburg, 2024.

Abstract

Monte-Carlo Tree Search (MCTS) is a Reinforcement Learning (RL) algorithm
that is capable of optimizing different types of decision-making processes. It
has been applied to a wide range of board and computer games as well as
real-world decision-making problems. The shot direction selection in a tennis
match is an interesting decision-making problem to which the MCTS algorithm
has not yet been applied. In this thesis, we present the tennis match simulation
environment Match Point AI, in which different adaptations of the MCTS
algorithm compete against real-world data-driven bot strategies. This thesis
aims to gain further insight into the MCTS algorithm’s ability to solve this
decision process. We also discuss, whether Match Point AI is a suitable
environment for this purpose.

Firstly, we test our environment for its ability to generate reasonable shot-by-
shot tennis data by comparing the generated results with real-world tennis
data. Although the agents and bots are limited in their choices compared
to real tennis, we are still able to generate realistic shot-by-shot tennis data
from which we can deduce plausible strategies used by the agents to make
decisions. By comparing different selection and decision policies, as well as
various parameter settings in the MCTS algorithm, we then evaluate which
algorithmic design is best to solve the shot selection decision process in tennis.
We found that agents using decision policy Greedy perform significantly better
than agents using Upper Confidence Bounds for Trees (UCT). We also see
that agents with selection policy Random perform significantly better in Match
Point AI against the Djokovic Bot than agents using either selection policy
UCT or Greedy.

Match Point AI has a lot of potential for optimization, some of which will
require more and better real-world tennis data. As the environment is improved,
the generated results and thus the insight into tennis and the MCTS algorithm
will become more valuable. There are also parameter settings as well as selection
and decision policies that need to be tested in this simulator, to further broaden
our understanding of the algorithm’s abilities.

I

Contents

List of Figures V

List of Tables VII

List of Acronyms IX

1 Introduction 1
1.1 Motivation . 1
1.2 Research Questions and Hypotheses 3
1.3 Thesis Structure . 5

2 Related Work 7
2.1 Reinforcement Learning . 7

2.1.1 Markov Decision Processes 8
2.1.2 Reward and Return . 9
2.1.3 State Value functions vs. Action Value functions 10
2.1.4 RL Algorithms and their Applications 11

2.2 Basic Principles of MCTS . 13
2.2.1 Game Trees . 13
2.2.2 Four Phases of the Algorithm 15
2.2.3 Selection Policies . 16
2.2.4 Decision Policies . 19

2.3 Applications of the MCTS algorithm 19
2.4 Tennis - Rules and Terminology 22

3 MCTS in the Tennis Simulator - Match Point AI 25
3.1 Match Point AI . 25
3.2 MCTS agents in Match Point AI 27

III

Contents

3.3 Data-Driven Bot Strategies . 31
3.3.1 Novak Djokovic Bot . 32
3.3.2 Average Bot . 33

3.4 Experiments . 34
3.5 Statistical Analysis of the Results 35
3.6 Software . 36

4 Results and Evaluation 37
4.1 Strengths and Limitations of Match Point AI 37
4.2 Analysis of Shot Patterns in Rally Openings 44
4.3 Evaluation of different Selection Policies 50
4.4 Evaluation of Decision Policies 51
4.5 Parameter Dependency of the MCTS Algorithm 53

5 Summary and Future Work 57

Bibliography 61

IV

List of Figures

2.1 Components of a RL Framework [14] 8
2.2 Example Game Tree . 14
2.3 Four Phases of the MCTS Algorithm 15

3.1 Tennis Shot Encoding . 26
3.2 MCTS Game Tree in the Simulation Environment 28
3.3 Composition of the Average Bot 33

4.1 Shot Type Distribution of the Real-World Dataset 39
4.2 Rally Length Distribution . 42
4.3 Most frequent Shot Patterns and Point Win Rates (left to right):

first serve from deuce side, first serve from advantage side, second
serve from deuce side, second serve from advantage side) 49

4.4 Point Win Rates of different UCT/Greedy MCTS Adaptations
against the Average Bot . 55

V

List of Tables

3.1 Information tracked for each Rally during the Experiments . . . 35
3.2 Effect size for the Chi-Squared test, Cramer’s V and its inter-

pretation [11] . 36

4.1 Win Percentages of MCTS Agents against Fixed Strategy Bots
(Win Rates of MCTS Agents out of 200 Matches) 41

4.2 Real-World Player Statistics . 41
4.3 Total Rally Count for Matches where MCTS Agent is serving

against Djokovic Bot . 44
4.4 Direction Frequency and Point Win Rate after First Serve from

Deuce Side . 45
4.5 Direction Frequency and Point Win Rate after First Serve from

Advantage Side . 47
4.6 Direction Frequency and Point Win Rate after Second Serve

from Deuce Side . 48
4.7 Direction Frequency and Point Win Rate after Second Serve

from Advantage Side . 49
4.8 Total Point Wins using different Selection Policies 50
4.9 Total Point Wins of MCTS Agents using different Selection

Policies against different Opponents 51
4.10 Total Point Wins using different Decision Policies. 52
4.11 Total Point Wins of MCTS Agents employing different Decision

Policies against different opponents 52
4.12 Win percentages of MCTS UCT/Greedy Agent with parameter

adaptations against Average Bot 54

VII

List of Tables

4.13 Contingency Table Parameter dependency 54

VIII

List of Acronyms

MCTS Monte-Carlo Tree Search
UCT Upper Confidence Bounds for Trees
AI Artificial Intelligence
RL Reinforcement Learning
DF Degrees of Freedom
MDP Markov Decision Process
DP Dynamic Programming
TDL Temporal Difference Learning
MC Monte-Carlo

IX

1 Introduction

The men’s professional tennis tour has been dominated by just three players for
the past two decades, earning them the nickname the Big Three. Between 2003
and 2023 the Big Three won 66 out of 80 Grand Slams, the world’s biggest
tennis tournaments. While Roger Federer has recently retired and Rafael Nadal
has been plagued by injury for the past year, in 2023, the last of the Big Three,
Novak Djokovic, has once again won three of the four Grand Slams, despite his,
for a professional tennis player, advanced age. Many tennis fans are wondering
when the new generation will ascend to the tennis throne. However, they seem
to have yet to find a way to defeat Novak Djokovic. Even though the Big Three
kept winning and winning, many areas of our world have changed dramatically
over the last 20 years. Particularly in the field of Artificial Intelligence (AI),
rapid advances have opened up new possibilities in almost every field, including
sports. With this thesis we want to see if this progress has led to the possibility
of applying AI to the decision-making processes in the sport of tennis, to gain
insight into strategies and shot placement, and perhaps even to help young
tennis players in their quest to defeat Novak Djokovic.

1.1 Motivation

The emergence of sports data analytics can be attributed to the increased use
of advanced technologies and powerful computing capabilities, which enable the
collection, processing, and analysis of large amounts of sports performance data.
The data itself can already provide deep insights into athletic performance,
tactical patterns, and performance optimization, which can then be used to
achieve the ultimate goal in any sport: to win. In recent years, there have
been many advances at the intersection of the fields of AI and sports. The
application of AI algorithms to sports data analysis has rapidly improved the
quality and quantity of the insights gained into the field of sport. Today,
the applications of AI in sports are diverse, ranging from improving the fan

1

1 Introduction

experience, for example by generating automated video highlights, to helping
coaches to better understand the strategies and decision-making processes in
their respective sport [43]. If we look at the application of RL algorithms
to decision-making problems in general, we find many different application
areas. RL algorithms have been successfully applied to navigation problems
in robotics and to optimize decision-making processes in autonomous driving,
various game-playing scenarios, as well as in sports. A widely used RL algorithm
is the MCTS algorithm. The development of MCTS as it exists today is the
result of the collaborative efforts of several researchers over time. The algorithm
originates from the Monte-Carlo (MC) method, which was used to solve complex
mathematical integrals using random numbers. The method dates back to
the late 1940s [42]. It is named after the city of Monte-Carlo, because one
of the inventors of the method, Stanley Ulam, had an uncle, who regularly
borrowed money from his relatives to go to the casinos in Monte-Carlo to
gamble [41]. In 2006 two important contributions were made to the algorithm.
First, Rémi Coulom introduced a framework that combined the MC method
with a tree search algorithm. This was then applied to a 9x9 Go playing
framework, which went on to win a computer-Go tournament [12]. Secondly,
Kocsis and Szepesvári introduced the UCT algorithm, which can be used to
effectively deal with the trade-off between exploration and exploitation, which
is a fundamental challenge in the field of RL and will be addressed later in
this thesis. MCTS is probably best known for its achievements in the game
of Go, where it was used in combination with deep neural networks to defeat
the former world champion Lee Sedol in 2016 [55]. MCTS is a heuristic search
algorithm that uses a decision tree to simulate and explore potential outcomes
of the given decision-making problem. The main objective of this thesis is
to evaluate the MCTS algorithm when it is applied to the decision-making
processes in the sport of tennis. To excel in tennis, athletes require outstanding
levels of fitness, highly developed motor skills as well as great strategic thinking
and decision-making capabilities. These decision-making skills are of great
interest to this thesis, as they are the aspect of a player’s performance that
we hope to improve by applying MCTS to tennis. However, the complexity
of tennis is far too great to consider all aspects of the sport when applying
the MCTS algorithm to it. To still be able to apply MCTS to tennis a tennis
match simulation environment called Match Point AI has been created, in
which the key elements of tennis are modelled. In this environment, two main
approaches to playing tennis were implemented. On the one hand side, there

2

1.2 Research Questions and Hypotheses

are different adaptations of the MCTS algorithm, which can learn strategies in
the tennis simulator by playing against the opponents. To find useful strategies
with this approach, the opponents have to show a behaviour that is close to
real-world tennis strategies. Otherwise, the strategies found by the MCTS
algorithm will not be related to real-world tennis. To achieve this, two different
fixed-strategy bots were implemented, whose behaviour is based on probabilities
from a real-world tennis dataset. With this setup, the different adaptations of
the MCTS algorithm are tested in Match Point AI against the two different
data-driven bot strategies in a variety of simulation matches. The resulting
data of those experiments is then analyzed to see which strategies and shot
patterns are found by the MCTS algorithm and to gain insight into which
adaptation is best suited to solve the decision-making problems in tennis.

1.2 Research Questions and Hypotheses

The main objective of this work, as stated in the introduction, is to evaluate the
MCTS algorithm when it is applied to the decision-making process in tennis.
Additionally, we test Match Point AI in its ability to generate realistic shot-by-
shot tennis data. This data is then used to analyze the tennis strategies found
by the MCTS algorithm. To achieve this, we address the following research
questions and test the corresponding hypotheses.

• RQ1: Is Match Point AI a suitable environment to gain insights into
strategies in tennis, and where are its strengths and limitations?

◦ H01: There is no significant difference in the total number of points
won by the MCTS agents in their matches against the Average Bot
compared to their total points won in matches against the Djokovic
Bot.

◦ H11: There is a significant difference in the total number of points
won by the MCTS agents in their matches against the Average Bot
compared to their total points won in matches against the Djokovic
Bot.

• RQ2: What are the most frequent shot patterns, found by the MCTS
agent, at the beginning of a rally when it is playing against the Djokovic
Bot?

3

1 Introduction

• RQ3: How does using the different selection policies UCT, Greedy and
Random influence the performance of the MCTS algorithm?

◦ H02: There is no significant difference in the total number of points
won by the MCTS agents when using the selection policies UCT,
Greedy and Random to play against the two Bot strategies.

◦ H12: There is a significant difference in the total number of points
won by the MCTS Agents when using the selection policies UCT,
Greedy and Random to play against the two Bot strategies.

• RQ4: When using UCT as a selection policy in the MCTS Algorithm, how
do different action selection policies, namely UCT and Greedy, influence
the MCTS agents performance in Match Point AI ?

◦ H03: There is no significant difference in the total number of points
won by the MCTS agents when using the selection policies UCT,
Greedy and Random to play against the two Bot strategies.

◦ H13: There is a significant difference in the total number of points
won by the MCTS agents when using the selection policies UCT,
Greedy and Random to play against the two Bot strategies.

• RQ5: How do different parameter settings of the MCTS algorithm
influence its performance when it is applied to Match Point AI ?

◦ H04: There is no significant difference in the total number of points
won by the MCTS agent using the UCT selection policy and Greedy
decision policy when using the C-values

√
2− 0.5,

√
2 and

√
2 + 0.5.

◦ H14: There is a significant difference in the total number of points
won by the MCTS agent using the UCT selection policy and Greedy
decision policy when using the C-values

√
2− 0.5,

√
2 and

√
2 + 0.5.

◦ H05: There is no significant difference in the total number of points
won by MCTS agent using the UCT selection policy and Greedy
decision policy when using 5, 10, and 15 simulations.

◦ H15: There is a significant difference in the total number of points
won by the MCTS agent using the UCT selection policy and Greedy
decision policy when using 5, 10 and 15 simulations.

4

1.3 Thesis Structure

Answering these questions will further broaden our understanding of the MCTS
algorithm in general and especially in its application to decision-making pro-
cesses that have deterministic and stochastic components, like the shot direction
selection process found in tennis. It will also contribute to the sport of tennis.
By analyzing the resulting shot-by-shot data generated by Match Point AI, it
is possible to gain insight into successful strategies against specific real-world
tennis players.

1.3 Thesis Structure

Chapter 2 will begin with an introduction to RL, in which we will cover impor-
tant basics of the field. We then go on to introduce a few selected RL algorithms
and present studies, in which those algorithms have been applied to different
problems. After that, we will explain the basic principles and architecture of
the MCTS algorithm, along with common alteration possibilities. Building on
the knowledge about MCTS, we then showcase its diverse application in related
research items across the domains of board and computer games, real-world
decision processes, and sports. From those studies, we derive our research
gap. This chapter concludes by giving a summary of different aspects of the
sport of tennis that are relevant to this study and clarifying some terminology.
In chapter 3, our methodology and the experiments conducted for this thesis
will be explained. We begin by introducing the tennis match simulation envi-
ronment Match Point AI and explain how an MCTS based agent is capable
of making decisions within this environment. We then delve into the data
analysis process employed to develop real-world data-driven fixed-strategy bots.
After outlining the experiments, which are conducted to address the research
questions, we then explain the methods utilized for the statistical analysis of
our experiments and finally conclude the chapter by giving an overview of
the software employed in this thesis. We present the results of the conducted
experiments in chapter 4 and evaluate the results. Furthermore, we will address
each research question and test the hypotheses. Chapter 5 then will conclude
this thesis with a summary of the main aspects of this work followed by a
discussion of the possibilities for future work on this topic.

5

2 Related Work

This chapter will start with a short introduction to the field of RL, home to
the MCTS algorithm. We will cover the most important basics of the field and
discuss commonly used algorithms and their application possibilities. These
fundamentals are based on the book Reinforcement Learning: An Introduction
[59] and on the content of the lecture on Computational Intelligence in Games
at the Otto-von-Guericke Universtät Magdeburg by Sanaz Mostaghim. The
chapter will go on to introduce the basics of the MCTS algorithm, including
its four phases and different selection and decision policies. We then introduce
studies in which the MCTS algorithm is applied to different fields, such as
board and computer games, real-world problems, and sports. We continue to
present related studies in which different modifications have been made to the
algorithm and where the influence of those modifications on the algorithm’s
performance is analyzed. Here we distinguish this thesis from these existing
studies and identify our research gap. This chapter concludes with a short
introduction to the sport of tennis and clarifies a few important terms that will
be used throughout this thesis.

2.1 Reinforcement Learning

The field of RL can be placed in the intersection between AI and decision-
making in general. As with many of the algorithms in the field of Computational
Intelligence, RL algorithms are inspired by dynamics observable in nature. The
approach to learning is based on the way a child or dog learns, which is trial
and error. By running back to its owner when called, a dog gets rewarded
with a treat. That way, when called again, it will again run back to its owner,
expecting a reward. Intelligent agents using RL algorithms can learn to make
decisions to achieve specific goals by interacting with their environments the
same way as children or dogs. Figure 2.1 shows a basic RL framework. An
agent in this framework can apply actions to its environment and with it, cause

7

2 Related Work

a change to it. That change can either move the agent closer to its goal, yielding
him a reward, or deter him away from the goal, resulting in a punishment,
which is usually done with a negative reward.

Figure 2.1: Components of a RL Framework [14]

This iterative interaction of an agent with the environment mirrors the trial
and error learning by real-world humans and animals. Using this trial and error
approach, RL agents can explore the possible actions in their environment to
find the actions yielding the highest rewards. In every state s of the environment,
the agent can select an action a from the set of all legal actions As in that state.
The agent employs a mapping that associates each state with probabilities to
determine the choice of the next action in that specific state. This probability
distribution is often referred to as a policy, commonly denoted as π. During
the interactions with the environment, the agent tries to optimize this policy,
by changing it based on the rewards it receives.

2.1.1 Markov Decision Processes

An important concept in the field of RL is the Markov Decision Process (MDP).
A RL task, in which the agent’s current state is only dependent on the previous
state and the action taken in that state, is called a MDP. Imagine a robot
navigating through a grid world for example. The robot can move one cell at a
time, either up, down, left, or right. His current position in any state is then
only dependent on his previous position and the direction he chose to go to.
This example fulfills the Markov property and is a MDP. As a counterexample,
let us assume the grid world of our robot is changing randomly. At any given
moment, a cell can be blocked off and no longer be available to the robot. This

8

2.1 Reinforcement Learning

would violate the Markov property because the robot’s state now is not only
dependent on its previous state and action but also on this randomly changing
environment.

2.1.2 Reward and Return

A reward can be implemented in different ways. It depends on the problem the
RL algorithm is facing, as well as the algorithm that is chosen to optimize the
problem. Looking at the game of chess for example, when moving a chess piece
to a tile where it can be captured by an opponent’s piece, the reward should
penalize that action in some way, for example by punishing the agent with a
negative reward. When the chosen action is capturing one of the opponent’s
pieces, that action could be rewarded with a positive value of +1. The capturing
of a queen can then also be rewarded with a higher value than the capturing of
a pawn for example. Before giving rewards for an agent’s actions it is important
to know the problem and to find reasonable rewards for specific actions and
states. Now, when we want to quantify the quality of an action in a state of a
game, it is often not enough to only consider the impact on the environment in
the next time step after the action is played. It is also important to consider
all or at least some of the future states that can be reached in the environment
when applying an action to the current state of the environment. Therefore,
it is possible to look at a whole episode of a game. An episode starts at the
current game state and ends when the game is over or at a predefined depth
of the game. The episode contains all states and actions that are played from
the current game state to the end of the game. The Return of an action is
different from its reward and it uses the episodes of a game. When calculating
the expected return for an action in a game, the expected return Gt of that
action is the sum of all rewards R at each time step t to the last time step in
the game T, as shown in formula 2.1.

Gt = Rt+1 +Rt+2 +Rt+3 + ...+RT (2.1)

The agent would then try to maximize this expected return when it has to
choose the next action. Another approach to calculating the return is called
Discounted Return. With this approach, all the rewards are weighed, based
on how far in the future they would be received. Rewards of actions at the

9

2 Related Work

beginning of the episode would get larger weights than those at the end of an
episode of the game, as shown in formula 2.2.

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
T∑

k=0

γkRt+k+1 (2.2)

The reward at t+1 is fully included in the return because receiving it is
guaranteed. This does not hold for the rewards after t+1, because they might
never be received by the agent. This is done using the discounting factor γ, a
value between 0 and 1. Receiving a reward is less and less likely the further we
look into the future, which is exactly the aspect, that the discounted return
approach addresses.

2.1.3 State Value functions vs. Action Value functions

A state value function, denoted by vπ(s), addresses the question of how desirable
it is to be in a specific state s whilst following a policy π. This desirability is
determined by using the discounted return of that state s under policy π as
shown in formula 2.3.

vπ(s) = Eπ

[
T∑

k=0

γkRt+k+1 | st = s

]
(2.3)

Value functions can be seen as a measure of potential future rewards that might
be gained by being in a specific state following a policy.

An action-value function, denoted by qπ(s, a), addresses the question of how
desirable it is to choose action a in state s following policy π. This value q is
also calculated using the discounted return as shown in formula 2.4

qπ(s, a) = E

[
T∑

k=0

γkRt+k+1 | st = s, at = a

]
(2.4)

Both the state value function and the action value function are fundamental
aspects of RL, because of their ability to provide a quantitative measure of
expected cumulative future rewards that are attainable by an agent in specific
state and state-action pairs.

10

2.1 Reinforcement Learning

2.1.4 RL Algorithms and their Applications

• Dynamic Programming (DP): DP can be utilized to solve complex
problems by breaking down the problem into simpler sub-problems. Those
sub-problems then are solved and their solutions are combined to solve
the overlying problem. Problems, to which this approach can be applied,
must fulfill the Markov Property and we need to have full knowledge of
the environment, which means we must know all the states that can be
reached in a game. All of the algorithms in DP share the goal of converging
to an optimal policy, which maximizes the expected reward in any given
state of the underlying MDP. There are two main approaches commonly
used in dynamic programming, iterative policy evaluation [25] and value
iteration [5]. The iterative policy evaluation algorithm typically consists
of two parts, which are repeated iteratively until the policy converges to
an optimum: policy evaluation and policy improvement. Starting with
an arbitrary policy, this policy is evaluated and then improved in one
iteration of the algorithm. The value iteration algorithm on the other
hand starts with an arbitrary value function and iteratively improves
that. Since their invention, there have been a lot of adaptations to
those algorithms. In [51], approximate modified policy iteration has been
applied to the game of Tetris. Offline policy evaluation has been used in
educational games to improve student engagement in the classroom [39]
and policy iteration algorithms have been used to compute value functions
and equilibrium strategies in model-based and model-free settings [20].
A cooperative policy iteration algorithm was used in solving decision
problems in graphical games [70]. Value iteration algorithms also have
been applied to various decision-making processes. In [15], value iteration
has been applied to agents, learning to use devices in the electrical power
system control. Furthermore, a data-driven value iteration pitch controller
for wind turbines was introduced in [38]. A stable value iteration algorithm
was applied to a two-player zero-sum game in [57] and the algorithm
was utilized to find solutions for the scheduling problem for multiclass
queuing networks [8].

• MC Method: In contrast to the DP algorithms, to apply the MC Method
it is not necessary to have complete knowledge about the environment.
Instead, this method uses random sampling of states, actions, and rewards
to gain experience about the environment and it can learn optimal policies

11

2 Related Work

based on that collected knowledge. To apply this method, a model of the
underlying RL problem is necessary and it is important to note, that this
method can only learn from complete episodes, meaning that it requires
the agent to interact with the environment until the episode terminates,
before it can update the estimated rewards of the value functions or
policies. The MC method has been applied to many fields, for example,
to study the rates of chemical reactions on surfaces [3], or in medical
physics, where it was used to determine the efficiencies of gamma-ray
detectors [47]. In [10], a framework for MC planning is introduced,
MCPlan, which then was applied to the real-time strategy game Capture
the Flag and tested in different settings. There is also a MC bayesian
approach, introduced in [66], which was applied to weighted voting and
bin-packing games. There are other applications of the method as well,
for example in the field of material sciences [58, 65] and Economics and
Finance [28].

• Temporal Difference Learning (TDL): One main difference between
the MC method and TDL is that TDL does not need to complete an
episode to update the value estimates of a state. Instead, in TDL, the
value estimate for a state is updated only based on one sample transition
from one state to the following state. This has the advantage, that TDL
can be applied to RL problems with infinite horizons, meaning problems,
where episodes do not naturally terminate or take too long to terminate.
It can also be more efficient compared to the MC method, especially when
the environment has long episodes. There is a long list of games to which
TDL has been applied. There is for example Connect6 [73], the game
Shogi [4] and Backgammon [64], in all of which agents utilizing TDL
were successful in playing against their opponents. In the mobile game
2048, different adaptations of the TDL approach in combination with
artificial neural networks were able to achieve good results [61]. The TDL
approach was also applied to real-world problems. In [29] for example,
TDL was used in combination with approximate dynamic programming
to create an efficient smart home energy management system.

These algorithms all have different strengths and weaknesses. In the shot
direction selection process in tennis, an episode consists of all the shots in a
rally until it terminates. Therefore, we only can reward actions after a rally
terminates, otherwise, we do not know who won the point. Also, we do not
have complete knowledge of the environment, because there are just too many

12

2.2 Basic Principles of MCTS

possible shot sequences in tennis rallies. This is why we decided to apply the
MCTS algorithm and not one of the other RL algorithms to the shot direction
selection problem in tennis.

2.2 Basic Principles of MCTS

The MCTS algorithm uses a decision tree to simulate and explore possible
outcomes of actions by iteratively traversing, expanding, and updating the tree.
This chapter will start by explaining game trees in general and the relevant
terminology of the nodes found in game trees. We will then go on to explain
the four phases typically found in the basic version of the algorithm and present
different policies that can be used in these phases.

2.2.1 Game Trees

When the MCTS algorithm is applied to a game, and there have been a
lot of games that the algorithm has been applied to, then the decision tree
representing the game is called a game tree. The game tree consists of nodes
and edges. The nodes represent game states, whereas the edges represent the
transitions between game states. In a game of Tic Tac Toe for example, a game
state would be the current state of the 9x9 board with a representation of the
crosses and circles that have been played up until that point. An action in this
game can be placing a cross or a circle into an open field, which then would
change the game state. In figure 2.2 part of an example game tree is displayed.

When starting a new turn-based game with the two players A and B and player
A having the first move, then player A would have three possible actions to
choose from: a1, a2 and a3. By choosing an action, a1 for example, the game
would transition from game state S0 to S1. In this example, player B would
then have the choice between the actions a1 and a3. The game ends as soon
as a terminal game state T is reached. A terminal game state is a state, from
which there are no actions to choose from, meaning one of the players has won
the game or there is a draw. If for example, player B would choose action a3
from the current game state S1, then the terminal game state T4 would be
reached and the game would terminate. An episode in this context consists of
all the state-action pairs from the start to the end of the game. How the MCTS
Algorithm can utilize game trees like this to optimize the decision process in

13

2 Related Work

Figure 2.2: Example Game Tree

the game will be the focus of the following chapters. Therefore, it is important
to introduce the following terms:

• Root Node: A root node is the node in the game tree that represents
the game state from which the next action has to be played. When player
A started the game by choosing between actions a1, a2 and a3, the root
node was the node with the game state S0. Assuming player A chooses
action a1, for the turn of player B the root node would change to the
node with game state S1 because that is the node from which player B
would have to choose an action.

• Leaf Node: A leaf node is a node in the tree representing a game state
from which not all possible actions have been played yet. Assuming
that in each game state in the example tree in figure 2.2 there are three
possible actions a1, a2 and a3, then the node which represents game
state S1 would be one of the leaf nodes because action a2 has never been
played.

• Expansion Node: An expansion node represents a previously unvisited
game state that can be reached from a leaf node and is important during
the expansion phase of the MCTS algorithm, as explained in the next
chapter.

14

2.2 Basic Principles of MCTS

• Terminal Node: A terminal node represents a terminal game state,
from which no action can be played. Meaning, the game is over and a
player won or there is a draw. Examples are the nodes with the game
states T4, T6, and T8 in the example game tree in figure 2.2.

2.2.2 Four Phases of the Algorithm

The MCTS algorithm typically consists of four phases, namely the Selection
Phase, Expansion Phase, Simulation Phase, and the Backpropagation Phase.
Each Phase alters the game tree, or traverses through the tree to find specific
nodes. The phases are shown in 2.3. Nodes with a R represent the root nodes
of the tree, L stands for the leaf node, nodes with an E in them are expansion
nodes and the letter T represents terminal nodes.

Figure 2.3: Four Phases of the MCTS Algorithm

• Selection Phase: The selection phase is the first phase of the algorithm.
During this phase, starting from the root node the algorithm traverses
through the already existing tree until a leaf node is found. It chooses
the next child node based on the selection policy. There are different
approaches to the selection policy, which are introduced in the next
chapter.

• Expansion Phase: Starting from the leaf node, one or more previously
unexplored nodes are added to the game tree. These new nodes are

15

2 Related Work

child nodes of the leaf node, that have not been visited yet. If the leaf
node is already terminal, the algorithm usually jumps directly to the
backpropagation phase, because a terminal node can not have any child
nodes.

• Simulation Phase: When there is at least one expansion node, the
algorithm simulates several episodes from the expansion node, either until
a terminal node is reached, or until the computational budget is used up.
Usually during the simulation, the actions are picked randomly from the
possible legal moves in each state. There also exist adaptations to the
algorithm that use semi-random simulation policies, which pick actions
that have done well in previous simulations [56]. When the actions of
the opponent during the simulation are not picked at random, but rather
based on the actual behavior of the opponent, it is often referred to as
guided or informed simulation.

• Backpropagation Phase: For each simulation of a game during the
simulation phase the tree is backpropagated through and the statistics
of the visited nodes during the simulation are updated. The statistics
can include the number of visits and the estimated reward value of that
node. These statistics can then be used in the decision strategy of the
algorithm, which decides which action to pick for the actual game. This
is the output of one iteration of the algorithm.

2.2.3 Selection Policies

To pick the next action during the selection phase the algorithm follows a
selection policy. This policy determines how to traverse through the game
tree starting from the root node until a leaf node is found. There are different
approaches to this. One important aspect of those approaches is the trade-off
between exploration and exploitation. The exploration describes the ability of
the algorithm to discover unvisited or only rarely visited states of the game. This
can help to find potentially better actions and is especially important in games
where the game states offer a large number of legal actions. It also helps to
counter the uncertainty of the statistics that are gathered during the simulation
and backpropagation phases of the algorithm. In games with dynamically
changing environments, exploration also can help to adapt quickly to those
changes. The counterpart to this is called exploitation. Exploitation uses

16

2.2 Basic Principles of MCTS

the information that already has been gathered by the algorithm to favor the
actions that have proven to be successful in the game. Exploiting good actions
is essential for the algorithm to converge to the optimal paths in the game
tree. When favoring exploration over exploitation there is a risk of converging
only slowly to optimal solutions and wasting computational resources in the
process. On the other hand, favoring exploitation over exploration can get the
algorithm stuck in local optima by converging too quickly without exploring
all the possible actions and it can lead to a loss in adaptability to changing
environments. To handle this trade-off, different approaches exist.

• Greedy: For the greedy selection policy different adaptations exist. The
formula 2.5 is the approach called constant-epsilon greedy. This approach
picks the next action uniformly at random with a fixed probability epsilon.
With probability epsilon-1 the action with the highest expected return
Q(a) is chosen to transition to the next node.

a* =

{
Randomly choose a ∈ A(s), with probability ϵ

argmaxa∈A(s)Q(a), with probability 1− ϵ
(2.5)

An adaptation of this approach is called Decaying-Epsilon Greedy. This is
done by decreasing the epsilon value over time, which leads to a stronger
exploration in the early stages of a game and to a better exploitation
of good actions towards the end of the learning process. When setting
the epsilon value to 0, this policy is called Greedy selection. In every
node, the next action with the best expected return is picked. With this
approach, good actions are exploited while ignoring the exploration of
the game tree completely.

• Random: Using selection policy Random means that in every node the
next action a* is picked uniformly at random from all possible actions
from that node A(s), as shown in formula 2.6.

a* = Randomly choose a ∈ A(s) (2.6)

• UCT: To move through the tree with the selection policy UCT, in every
node the action with the highest UCT value is picked. For each node the
UCT value is calculated as shown in formula 2.7.

17

2 Related Work

a* = argmax a∈A(s)

(
Q(s, a) + C ·

√
ln(N(s))
N (s, a)

)
(2.7)

N(s) denotes the number of visits of the game state s. The N(s,a) value
represents the number of times in which action a has been picked in state
s. The C-value is an application-dependent constant, which balances
the exploitation and exploration of the game tree, which is considered
one of the main aspects of the MCTS algorithm [48]. A higher C-value
translates to a better exploration of all the existing game states, whereas
a lower C-value exploits the game states that have shown good results
already. Finally Q(s,a) also is application dependent and represents the
expected return yielded by picking action a in the game state s. The
UCT approach was first introduced in 2006 by Kocsis and Szepesvári [30].

• Softmax: The Softmax selection policy assigns a probability P to each
possible action a available in the current state s. The probability is
dependent on the expected return Q of each action as shown in 2.8.

P (a|s) = eQ(s,a)/τ∑
b∈A(s) e

Q(s,b)/τ
(2.8)

In this approach, τ is a constant that controls the trade-off between
exploration and exploitation. A higher value for τ results in better
exploration of the game tree, whereas a lower τ will favor the exploitation
of good actions. After assigning the probabilities to all the possible
actions in the current node, the next node is reached by picking the next
action based on their probabilities.

To apply the MCTS algorithm to any kind of problem, a selection policy has
to be chosen. This choice is dependent on the characteristics of the problem,
the available information as well as the desired trade-off between exploration
and exploitation. In this thesis, the algorithm is applied to the sport of tennis,
which in this form has not been done before. Therefore, three different selection
policies will be applied, namely Random, Greedy, and UCT. The algorithm’s
performance in winning points will be evaluated across the three presented
policies to identify the most effective one for this particular problem.

18

2.3 Applications of the MCTS algorithm

2.2.4 Decision Policies

When the computational budget is used up or another termination criterion
is met, the MCTS algorithm stops to run through the four phases. At this
point, a final decision has to be made: from the root node, the next action for
the actual game must be chosen. To make a decision the algorithm can use
different decision policies.

• Max Child/Greedy: With this approach, the action that leads to the
node with the highest expected reward is picked.

• Robust Child: The action that leads to the child node with the highest
visit count is picked.

• Robust-max child: When there is a child, that has both the highest
visit count as well as the highest expected reward value, that action is
picked. When such a child node does not exist, the simulations continue
until a child like that is found [7].

There are more possible approaches to select the final action and there is not
a lot of research on the effectiveness of these decision policies. One study
investigates different policies in a strategic card game Lords of War, to create
entertaining opponents. As a side effect, they found significant differences in
the playing strength of MCTS agents, using different decision policies [53]. In
this thesis, two different decision policies will be evaluated. Firstly we use the
Greedy decision policy, always choosing the action with the highest expected
return. Secondly, we use UCT again, but this time as a decision policy, to
see how it will affect the learning process of the MCTS agent when the final
decision is still able to explore the possible actions in the game.

2.3 Applications of the MCTS algorithm

MCTS is a powerful heuristic search algorithm, which can be applied to a
variety of decision-making processes. It has been successfully used in different
turn-based board games, such as Carcassone [18] and Settlers of Catan [60].
The algorithm got a lot of attention when it was used in combination with
deep neural networks in the game of Go, defeating various professional Go
players [55]. MCTS also was applied to various computer games, for example,
to train agents to play Super Mario Bros [27] and to optimize the decision

19

2 Related Work

process of the hero selection in multiplayer online battle arena games [9], or
in the real-time strategy game Wargus, where it was used to plan tactical
assaults on the opponent’s units [2]. MCTS was also applied to the mobile
game 2048, where it was able to effectively play the game despite the game’s
high uncertainty factors [62] and it was also applied to Hearthstone: Heroes of
Warcraft to examine the effect of supervised prediction models on an MCTS AI
[74]. Most turn-based board and computer games share a crucial commonality.
When a player takes an action in the current game state, that action results in a
singular, specific new state of the game. Take chess for instance, when moving
a piece from its current tile to another there is no possibility that the piece
will land on a different tile, than the chosen one. This differs from games that
incorporate stochastic components. Consider the game Battleship, where calling
out coordinates to locate an opponent’s ship can lead to different subsequent
game states. If you hit your opponent’s ship you earn another turn. If you miss,
however, it becomes your opponent’s turn to call out coordinates. Real-life
decision-making processes often come with a high level of unpredictability
due to their stochastic elements. The MCTS algorithm still can be applied
successfully to those kinds of problems. It proved to be a viable method to solve
the capacitated vehicle routing problem with traffic jams and risk-aware project
scheduling problem [40], as well as the airline crew pairing problem [34] and the
dynamic flexible job shop scheduling problem [33]. Moreover, the MCTS algo-
rithm produced acceptable solutions when employed in addressing a real-world
structural engineering design problem [49] and showed promising results when
applied to solve Planning Problems in Transportation Domains [68]. In the field
of sport the algorithm was successfully used to find and compare strategies in
the Olympic sport of curling [44]. It was also used in combination with artificial
neural networks to optimize decision processes before and during Formula-E
races [37] and even to generate plays in American football [31]. When we look
into the application of the MCTS algorithm to the sport of tennis, there is only
a limited number of studies related to our work. Firstly, video broadcasting
data from tennis matches was used to analyze tactical information in tennis
using MC simulation to find optimal strategies [63]. Even with the use of an
unrelated data set to ours and a different algorithmic approach the primary
aim of this study closely aligns with one of the research questions discussed in
this thesis. It demonstrates that employing AI algorithms can yield valuable
insights into tennis strategies. In the second study, the MCTS algorithm was
implemented in a 3D tennis video game. A tennis agent utilizing the MCTS

20

2.3 Applications of the MCTS algorithm

approach was developed using a data set of pre-recorded tennis matches. The
primary objective of this study was to generate a behavior for the agent that is
both believable and skillful. The results show that this goal can be accomplished
using the MCTS approach.
When we look into studies that compare different action selection policies of
MCTS, several relevant research items can be found. MCTS was applied to the
game Tron with a variety of different selection policies, both deterministic and
stochastic. An empirical comparison was conducted. Results show that deter-
ministic policies outperform stochastic policies, the most successful policy being
the UCBI-tuned, followed by UCB1 [46]. An important difference between this
study to our current work is that in Tron, player moves can occur simultaneously
whereas in tennis players take turns to hit the ball. Another study offered two
methods to improve the UCT action selection policy for deterministic games by
using a moving average return function and a sufficiency threshold [21]. In the
created match simulator Match Point AI in this thesis, tennis was modeled as a
non-deterministic game, meaning there are probabilities for errors and winners
involved in each shot. That is not the case in deterministic games, which
distinguishes this thesis from the presented paper. Another research paper
compared two different action selection policies in general game playing, namely
UCT and UCT-tuned. They also examined how the number of simulations
during the simulation phase influences the performance of the algorithm with
the two different policies. Results show that with a lower number of simula-
tions UCT-tuned outperforms UCT. But with a higher number of simulations
both selection policies perform similar [17]. While the comparison of different
parameter settings of the MCTS algorithm is also relevant to our work, the
presented paper compared the different adaptations when applied to board
games which differ from our tennis environment in many ways, such as its
complexity and the uncertainty factors. The current project differentiates from
the above-mentioned studies in other ways as well. We use shot-by-shot tennis
data from the match charting project introduced by Jeff Sackmann [50]. The
match charting project is a crowd-sourced effort aimed at enhancing both the
quantity and quality of professional tennis data. The dataset is used widely
in literature, for example, to predict tennis match outcomes by using machine
learning techniques [32], to generate win probabilities during ongoing matches
[19] or to analyze the distribution of rally lengths [35]. In addition to using a
different data set compared to the related work, our study aims to evaluate
specific shot patterns against modeled real-world tennis players and also to

21

2 Related Work

compare different algorithmic designs of MCTS in its application to Match
Point AI. To the best of our knowledge, there have been no studies yet that use
the MCTS algorithm in combination with shot-by-shot real-world tennis data
to gain strategic insights into tennis as well as evaluate different adaptations of
the MCTS algorithm while doing so.

2.4 Tennis - Rules and Terminology

For a better understanding of the next chapters of this thesis, a short intro-
duction to tennis is necessary. A rally in tennis is the shot sequence starting
from the serve of one player until the point is over, resulting in one player
gaining a point. Rallies can consist of one shot only, if the serving player hits
a first-serve winner, commonly referred to as an ace, or it can be 20 or 30
shots long, depending on how many shots it takes one of the players to hit a
winner or make an error. Scoring points can be accomplished by either errors
committed by the opponent or the execution of winning shots by the player.
Points resulting from the opponent’s failure to make a successful and deliberate
shot are categorized as errors. An error occurs, if the ball lands outside of
the court or when it lands in the net. Conversely, points secured by a player
through skillful and strategically placed shots that go beyond the opponent’s
reach and result in a point are considered winners. Therefore, the dynamics
of tennis scoring involve a balance between capitalizing on the opponent’s
mistakes and actively creating opportunities for successful shots to win points.
When the first serve of one of the players is an error, it is called a fault and he
gets a second chance and can serve a second serve. If the second serve is also
an error, it is referred to as a double fault and grants the opponent the point.
Therefore, usually, the first serve is hit fast and with high risk, whereas the
second serve is played more conservatively with lower risk. It is also necessary
to note that players alternate in serving from two different sides of the court,
depending on the score of the match. Each game starts with a serve from the
right side of the court, called the deuce side, and the ball has to land in the
opponent’s left serving box. The next point then is started with a serve from
the left side of the court, referred to as the advantage side of the court and the
serve has to land in the opponent’s right service box. The service boxes are
designated areas of the court in which the serves have to bounce. The first shot
after a successful serve is called a return. A detailed explanation of the tennis
scoring system is not relevant to this thesis. It is however important to know

22

2.4 Tennis - Rules and Terminology

that the system allows a player to win a match, even though he might not have
won more points than his opponent throughout the match. This phenomenon is
called the Simpsons Paradox. In 2013 61.000 professional tennis matches were
analysed regarding this dynamic. Results showed that 4.5% of those matches,
which took place over the course of 21 years, were won by the player with fewer
total points won [6]. This study later was followed up on and confirmed in 2019,
where results show that the paradox occurs in 4.5% in men’s professional tennis
[36]. In a study aiming to predict tennis match outcomes through machine
learning algorithms, findings indicated that the predictor variable "total points
won" was the most dominant feature in linear models for predicting match
outcomes [32]. Based on these studies we assume that winning points leads to
winning matches despite the Simpsons Paradox. So we developed the MCTS
algorithm with the goal of winning points instead of matches.

23

3 MCTS in the Tennis
Simulator - Match Point AI

This Chapter presents the Tennis Match Simulation Environment, Match Point
AI, which was created to address the research questions and hypotheses. We will
illustrate how the MCTS algorithm is applied to this environment, showcasing
the creation of game trees in the simulator and demonstrating how the algorithm
competes against the opponents. The chapter continues with the explanation
of the opponents, and the fixed strategy bots, detailing the data used to create
them and showing how the bots can react to different situations in the tennis
simulator. We then present the settings for the experiments conducted in Match
Point AI, followed by showing our methods to statistically analyze the results
of those experiments. This chapter concludes by crediting the software used in
this thesis.

3.1 Match Point AI

In a real-world tennis match, many factors can influence the course of the
match as well as the outcome of individual points. There can be external
factors such as rain delays or the support by fans. On the court, there can be
foot faults when serving, time violations, and medical timeouts. The outcome
of a rally is of course heavily influenced by the shots in that rally, particularly
the ball velocity, the player’s movements and positions on the court, and the
shot placement. All of these factors and many more can have an impact on the
outcome and the course of rallies and matches. To be able to apply the MCTS
algorithm to the sport of tennis we model tennis in a simulation environment
called Match Point AI, which considers only the most important aspects of the
sport because it is nearly impossible and for our purpose also not necessary to
consider every influential aspect there is in real-world tennis. To start with, in
Match Point AI, the players follow the typical tennis match rules. The scoring

25

3 MCTS in the Tennis Simulator - Match Point AI

is done using the traditional scoring system in tennis [69]. They switch serve
after each game, they play tiebreaks at a score of 6:6 in a set, they serve to the
correct serving box according to the score in a game and if the first serve is
a fault, they get a second serve. Professional tennis players can play the ball
very precisely in the direction they want. In Match Point AI the directions are
broken down to the left or right 30% of the court and the middle 40% of the
court, resulting in three possible directions for each shot. The service boxes are
split into three directions as well. Players in Match Point AI can either serve
wide, through the middle, or play a body serve directly onto the opponent’s
body. The direction encoding and serve direction encoding are shown in figure
3.1.

Figure 3.1: Tennis Shot Encoding

This encoding is also used by the match charting project [50] and therefore
had to be used in the simulator as well. Otherwise, our player’s behavior could
not have been based on the match charting project dataset. When it is one
of the player’s turns to choose an action in an ongoing rally, he can choose
to play the ball in the three different directions, encoded as 1, 2, and 3. If
it is a player’s turn to serve, he can choose between the action encodings 4,
5, and 6. The shot length encoding is used for visualization purposes. It is
based on the match charting project dataset as well. Still, it does not influence

26

3.2 MCTS agents in Match Point AI

the winner and error probabilities of individual shots and the depth can not
actively be chosen by the players in Match Point AI. Tennis is modelled as a
non-deterministic game. When a player chooses a direction to play the ball in
there is always the possibility that the shot will be an error or a winner. The
probabilities for an error or a winner are different depending on the current
game state. A game state in Match Point AI includes the direction of the
opponent’s previous shot, it considers which player was opening the rally with
a serve and whether that serve was a first or a second serve. To summarize,
each shot in Match Point AI consists of an active choice of direction of one
of the players and a stochastic component, whose probabilities are dependent
on the current game state. The probability of the return being an error is for
example higher when the previous serve was a first serve instead of a second
serve because the second serve is usually easier to return than a first serve.
There are certain important aspects in real-world tennis, that could not be
taken into account in Match Point AI. In a real-world tennis match, the ball’s
velocity and the position and movement of the opponent on the court impact
the player’s decision to play the next ball in a specific direction. These aspects
are not included in the dataset and therefore were not modeled in Match Point
AI. We also created the simulator under the assumption, that factors like rain
delays, foot faults, and medical timeouts do not have a large enough impact on
outcomes of rallies and matches for us to consider them in Match Point AI.

3.2 MCTS agents in Match Point AI

This chapter illustrates how an agent based on the MCTS algorithm can play
tennis matches in Match Point AI. The MCTS algorithm runs through four
phases as introduced in subsection 2.2.2, utilizing a game tree. An illustration
of a game tree during one simulated match in Match Point AI is presented in
figure 3.2.

A rally always starts at the red node at the top of the tree. The players take
turns to play a shot in a rally, represented by the blue and green nodes. Each
node represents one shot in a rally. The shot encoding is explained in figure 3.1.
In this tree however, we have more than just the encoding of the depth and
direction of a shot, but also whether or not the shot was a winner, which is
encoded as a *, or an error, encoded by e. After each point in a match, meaning
as soon as a rally terminates, we start over at the red node at the top of the

27

3 MCTS in the Tennis Simulator - Match Point AI

Figure 3.2: MCTS Game Tree in the Simulation Environment

tree. In this particular tree, we have already terminated some rallies. When
we traverse the tree by always choosing the left node for example, the rally
consists of two shots, a first serve in direction 4 by the blue player followed by
a return error by the green player, 39e. If we go through the tree by always
choosing the right path, the rally consists of three shots, a first serve fault by
the blue player (6e) followed by a successful second serve (5) and finally a
winner, played by the green player (18*). With this tree design, we can record
every rally in a match, or even in several matches, in a single tree, which then
can be used by the MCTS algorithm.

Suppose we are in an ongoing rally in a match simulation. The rally up to this
point has been a successful first serve by the blue player with direction encoding
5 and the green player made a successful return, encoded as 38. This rally
corresponds to the red path leading to the enlarged green node in figure 3.2 with
the encoding 38. From this node, it is the turn of the MCTS agent to choose
a direction to play the ball in. At this point, the first phase of the algorithm
begins. During the selection phase, the algorithm starts at the root node, which
in this case is the enlarged green node with encoding 38, and traverses through
the tree using the selection policy until a leaf node is found. In this case, the
root node is the same as the leaf node because not all directions have been
played from this node yet, but instead, only direction 3 has been played so far.

28

3.2 MCTS agents in Match Point AI

This means that in this situation the algorithm would jump to the second step,
the expansion phase. When the root node is not the same as the leaf node
the algorithm traverses through the tree until it finds a leaf node, using its
selection policy. During the expansion phase, the algorithm adds all unexplored
shot directions to the tree. This is showcased in the example tree by the yellow
nodes. From these yellow nodes the third phase, the simulation phase, begins.
In our example tree, we only run two simulations per expanded node, as shown
by the lighter-colored nodes. Two simulations per expanded node is a very
small number and was chosen only to keep the figure from getting too large.
During the simulation phase, the MCTS agent and the bot take turns adding
shots to the simulated rally until a terminal node is reached. Our MCTS agents
play their shots by randomly choosing a direction to play the ball to. For the
fixed-strategy bot, an informed simulation phase is performed. This means
that we know everything about the opponent’s behavior. For the simulation
phase, we do not have to randomly add an opponent’s shot, but we get the
next shot from the actual bot with the actual bot’s behavior and add it to the
simulated rally. The informed simulation has the advantage that the MCTS
algorithm learns the opponent’s behavior directly during the simulation phase
and can then make an informed decision based on that knowledge. For every
time that a simulated rally reaches a terminal node the algorithm performs the
fourth phase, the backpropagation phase. It is also possible that the expanded
node is terminal. For that case, no simulations are run from the expanded
node, because the rally already is terminated. Here, the algorithm would skip
the simulation phase and jump directly to the backpropagation phase. During
this phase, the visit counts and win counts of the relevant nodes are updated
and the new UCT values are calculated. When running 15 simulations for an
expanded node for example and 10 of those rallies are won by the MCTS agent,
the visit count of the corresponding expansion node would be set to 15 and the
win count to 10. Finally, when the predefined number of simulations for all
the expansion nodes is reached the algorithm makes its final decision using the
predefined decision policy. The MCTS algorithm applied to Match Point AI in
this form can be seen in the following pseudo-code. Lastly, the MCTS agents
have the same probability of making errors or winners in a rally, as the Average
Bot. The origin of these probabilities will be explained in the next chapter.

29

3 MCTS in the Tennis Simulator - Match Point AI

Algorithm 1 Monte Carlo Tree Search (MCTS)
1: Input: root, budget
2: Output: next action (direction to play the next ball in)
3:

4: function MCTS(root, budget)
5: for i← 1 to budget do
6: node← root ▷ Selection Phase
7: while node is fully expanded and node is not terminal do
8: node← SelectionPolicy(node)
9: end while

10: leaf ← node ▷ Expansion Phase
11: if leaf is terminal then Backpropagation(leaf)
12: else
13: unexplored← all actions not yet played from leaf

14: for all action in unexplored do
15: Create expansion for action

16: end for
17: for all node in expansions do ▷ Simulation Phase
18: result← Simulate(node)
19: while node is not root do ▷ Backpropagation Phase
20: Update node statistics according to result

21: node← parent of node
22: end while
23: end for
24: end if
25: end for
26: return DecisionPolicy(root)
27: end function
28:

29: function Simulate(node)
30: while node is not terminal do
31: if MCTS Agents turn is True then
32: Randomly choose action from available actions
33: else Get action from Opponent ▷ Informed Simulation
34: end if
35: Create new node by applying action

36: end while
37: return result of simulation from terminal state
38: end function

30

3.3 Data-Driven Bot Strategies

3.3 Data-Driven Bot Strategies

The MCTS algorithm needs an opponent against which it can learn to play
the game. Therefore, we implemented two different bots, which follow different
fixed strategies in tennis. To create these strategies, real-world tennis data from
the match charting project [50] was analyzed. Between the second of January
2017 and the 23rd of November 2023, the match charting community collected
shot-by-shot tennis data for 295.354 rallies of singles matches in professional
men’s tennis. This data includes 30 different information points about each
rally tracked in the dataset, including for example the tournament at which the
match was played, the two opposing players, the scores, and each shot in each
rally. This is done using a tennis shot encoding, where for each attribute of a
shot a number, letter, or character is assigned. A detailed description of every
possible shot encoding can be found in the match charting project. Based on
this data two different bot strategies were created. This was done by looking
at different situations in a match to make it as realistic as possible with the
given data. Therefore, we first differentiate between three main shot types: the
serve, the return, and all the other shots.

• The Serve: The serve can be either from the advantage side or the deuce
side of the court. The players alternate between serving from the two
sides after each point. This difference is taken into consideration because
the serve through the middle might be more difficult for some players
when serving from the deuce side compared to the serve through the
middle from the advantage side. It is also possible that the player either
has to hit a first serve or a second serve. The second serve often is played
with a lower risk compared to the first serve, which has an effect on the
placement as well as on the error and winner probabilities of the shot.
For each of those scenarios, the players can choose in which direction to
serve, to the left, through the middle, or to the right side of the service
box. The dataset was analyzed to see with which probability a player
would play in which direction for each of those scenarios, meaning there
are 12 possible scenarios (2 sides to serve from * 2 different serve types *
3 different directions) for which the probabilities were extracted. When
the bot has to serve in the Match Point AI it uses these probabilities
to choose the direction of the serve. For each of those 12 scenarios, we
then extracted the error and winner probabilities. Because each shot can

31

3 MCTS in the Tennis Simulator - Match Point AI

be a winner, an error, or neither, a total of 36 different probabilities are
included in each bot for their behavior when serving.

• The Return: The direction of the return and the corresponding error
and winner probabilities are dependent on the previous serve. That means
the probabilities are different for the 12 serve scenarios described above.
For each of those 12 scenarios, a return can be hit into the 3 directions
of the court, to the left, through the middle, and to the right. So there
is a total of 36 (3 directions * 12 serve scenarios) different shots for the
return. Each of those shots again has the potential to be an error or a
winner, which means a total of 108 different probabilities were extracted
from the dataset to create the return behavior for each bot.

• Normal Shot: For the other shots in a rally after the return a new
set of probabilities was extracted from the dataset. Firstly, the next
shot in a rally is influenced by who was serving in that rally. When a
player is serving, that player has the first chance to dictate the point and
be offensive, whereas the returning player usually is the more defensive
player, because he has to start the rally by reacting to the opponent’s
serve. This dynamic does not hold however for second serves. Rallies
after a second serve usually are more balanced, with both players having
chances to dictate the rally and be aggressive. Another factor influencing
a shot in a rally is the direction of the previous shot. So we again have 12
different situations in a rally (2 possible serving players * 2 serve types *
3 directions of the previous shot), which are influencing the direction of
the next shot and the winner and error probabilities. From each of the 12
described situations, the shot can be played in three different directions.
When we include the error and winner probabilities for each of those 36
shots, again 108 different probabilities were extracted from the dataset
and used to create each bot’s shot behavior during a rally after the return.

3.3.1 Novak Djokovic Bot

Novak Djokovic undoubtedly is one of the greatest tennis players of all time.
Currently ranked Number 1 in the world, he holds many records, such as
the most grand slam wins and most weeks as the world’s number one ranked
player. To create a tennis bot that is based on Djokovic’s behavior on the
tennis court and then letting MCTS agents learn to win points against him

32

3.3 Data-Driven Bot Strategies

poses an interesting challenge. In the specified time frame, a total of 19.325
rallies were tracked by the match charting community, in which Djokovic was
playing. From these rallies, a total of 252 different direction, error, and winner
probabilities for serves, returns, and normal shots were extracted as described
above, and based on these probabilities the Djokovic Bot’s behavior in Match
Point AI was created.

3.3.2 Average Bot

To create the behavior of the Average Bot the same 252 probabilities for shot
direction, errors, and winners were extracted from the dataset. This time all
of the 295.354 rallies, tracked in the specified time frame, were used for the
data analysis. In those rallies, a total of 420 professional men’s tennis players
participated. Figure 3.3 shows the composition of the Average Bot with a focus
on the 10 players, which had the biggest impact on the Average Bot’s behavior.
Rafael Nadal for example was part of 5.4% of all the rallies in that dataset.

6.7%

6.3%

6.2%
5.4%5.0%

4.6%
4.1%

3.8%

3.3%

3.1%

51.5%

Roger Federer
Novak Djokovic
Daniil Medvedev
Rafael Nadal
Stefanos Tsitsipas
Dominic Thiem
Alexander Zverev
Andrey Rublev
Jannik Sinner
Gael Monfils
Others

Figure 3.3: Composition of the Average Bot

33

3 MCTS in the Tennis Simulator - Match Point AI

3.4 Experiments

Match Point AI enables us to conduct numerous match simulations with diverse
settings, offering a wide range of possibilities for exploration and analysis. For
the research questions in this thesis, three sets of experiments were conducted:

• Experiment Set 1: To gain insight into the capability of Match Point AI
to generate reasonable tennis data we first simulate 500 matches between
the Average Bot and the Djokovic Bot. The resulting shot-by-shot data
from these simulations allows for the analysis of important aspects. The
Djokovic Bot should win most of the points and matches against the
average bot and the average rally length in the simulated rallies should
be comparable to real-world tennis rally lengths. By comparing these
aspects between the simulated results and the real-world data we gain
insights into whether or not Match Point AI is a suitable environment to
retrieve insights about strategies in tennis.

• Experiment Set 2: To evaluate the performance of different selection
and decision policies in the MCTS algorithm, we simulate matches, in
which MCTS agents with different selection and decision policies play
matches against the two bot strategies. Three different selection policies
are used combined with two different decision policies, which means there
are six different MCTS agents playing against both the Average Bot
and the Djokovic Bot. In this set of simulations, there are 12 different
match-ups and in each match-up, we simulate 200 matches. With the
results of those experiments, we can evaluate the effectiveness of different
selection and decision policies against the two bots. Specific parts of the
results from this set of experiments are also utilized to perform the shot
pattern analysis.

• Experiment Set 3: To analyze the effect different parameter settings
have on the performance of the algorithm, we simulate matches with the
MCTS agent using UCT as selection and Greedy as decision policy. We
adapt this agent by using three different C-values as well as three different
counts of simulations conducted during the simulations phase. These
nine adapted agents then play against the Average Bot in simulations of
100 matches per adaptation.

For each rally in each simulation match in Match Point AI, we track the
information shown in table 3.1.

34

3.5 Statistical Analysis of the Results

Information Relevance

Point Winner Main parameter for all performance evaluations
Score Determine serve position (Advantage or Deuce Side)
Selection Policy Performance evaluation of different Selection Policies
Decision Policy Performance evaluation of different Decision Policies
Opponent Performance evaluation against specific players
Parameter settings Performance evaluation of different Parameter settings
Rally length Suitability of Match Point AI
Serving player Shot pattern analysis
Shot directions Shot pattern analysis

Table 3.1: Information tracked for each Rally during the Experiments

3.5 Statistical Analysis of the Results

The research questions in this thesis are answered by analyzing the results
generated in the experiments. In addition to descriptive statistics, we conduct
different kinds of tests on the resulting data to analyze it for statistically
significant relationships. The main method used to verify the hypotheses is
the Chi-Squared test [45] with an alpha of 0.05. This test is often used to
examine if there is a significant association between two categorical variables.
A pairwise comparison is conducted as a post-hoc test in cases, where the
initial Chi-Squared test shows significant relationships between the categorical
variables. For the post-hoc tests, a Bonferroni-Holm correction is used to
account for the family-wise error rate [24]. To gain insights into the effect size
of a significant relationship in the data we calculate and interpret Cramer’s V
[13], using formula 3.1.

V =

√
χ2

n ·min(k − 1, r − 1)
(3.1)

χ2 is the Chi-Squared value, n translates to the total number of observations,
and k and r are the numbers of categories for the first and the second variable.
A larger value for Cramer’s V translates to a greater statistical connection
between two variables. The interpretation of Cramer’s V is dependent on the
Degrees of Freedom (DF) of the data that is analyzed. DF are calculated as
shown in formula 3.2, with the DF and the columns and rows of the contingency
table, c and r.

35

3 MCTS in the Tennis Simulator - Match Point AI

DF = (r − 1) ∗ (c− 1) (3.2)

Table 3.2 shows how an effect size can be interpreted based on the dataset’s
DF [11].

Degree of freedom Small Medium Large

1 0.10 0.30 0.50
2 0.07 0.21 0.35
3 0.06 0.17 0.29
4 0.05 0.15 0.25
5 0.04 0.13 0.22

Table 3.2: Effect size for the Chi-Squared test, Cramer’s V and its interpretation
[11]

3.6 Software

To create Match Point AI, analyze the dataset, and implement the MCTS algo-
rithm as well as conduct the statistical analysis of the results, the programming
language Python (Version 3.11.6) [71] is used. In addition to the standard
modules of that Python version, the following packages are utilized. Match
Point AI is created using the package PyGame (Version 2.5.2) [54]. The data
analysis is performed using the Python packages Pandas (Version 2.1.1) [72]
and NumPy (Version 1.26.1) [23]. To visualize game trees during the different
phases of the MCTS algorithm, the packages NetworkX (Version 3.2) [22] and
Matplotlib [26] are used. Finally, the statistical analysis of the results is done
using the library statsmodels (Version 0.14.1) [52].

36

4 Results and Evaluation

The upcoming chapter will present and evaluate the results of the conducted
experiments. We address each research question and their corresponding
hypotheses and examine our findings. The chapter begins by presenting the
strengths and limitations found in Match Point AI. We then continue by
showing the most frequent shot patterns found by one of the MCTS agents
at the beginning of a rally and those pattern’s success rates. Subsequently,
we will analyze the influence of different selection and decision policies on the
performance of the MCTS algorithm when it is applied to the decision-making
problem of shot direction selection in tennis. Lastly, we will investigate the
effects of adaptations made to two specific parameters in the algorithm and
how these adaptations influence the algorithm’s performance in winning points
in Match Point AI.

4.1 Strengths and Limitations of Match Point
AI

While conducting the experiments for this thesis and designing the different
bots and agents, we observed several limitations Match Point AI and the Bots
and Agents have. To apply the MCTS algorithm to the sport of tennis we first
modeled tennis as a non-deterministic game. A model of something is never
as accurate as the real thing. Here are a few of the biggest compromises that
were made during the design of Match Point AI.

• Ball velocity: We do not consider the ball velocity in Match Point AI.
This is due to the fact, that in the dataset we use, no information about
ball velocity is tracked for the shots. This is a limitation because it is
safe to say that the ball velocity has an impact on the error and winner
probabilities of each shot. In a real-world tennis match, the professional
players can choose how much risk they take in each shot by hitting the

37

4 Results and Evaluation

ball slow or fast. In some situations it might be advantageous to hit a
slow ball to break the opponent’s rhythm for example, in other situations
it might make sense to play a really fast ball, increasing both the winner
and error probabilities of that shot. In Match Point AI the bots and
agents do not have the option to choose to play a fast or a slow ball,
because we do not have access to data on which this decision could be
based.

• Player Positions: It can have a large impact on the choice of direction
of the ball when you can see at what position on the court the opponent
is currently at or in which direction of the court he is currently moving.
It might for example be beneficial for a player to play the ball against
the opponent’s direction of movement. In the dataset, we do not have
information about the player’s position or movement on the court, which
means we can not include these aspects in the shot direction selection
process of the bots and agents.

• Shot Selection: In our shot direction selection processes, neither the
bots nor the agents have the option to choose between different shot types
like slice or topspin from the baseline, drop shots, lobs, attacking the
net, and playing volleys, overheads or choosing between different types of
serves like kick or slice serves. In terms of their choices in a simulated
tennis match, our players are very limited compared to the choices a
real-world tennis player has in a match. However, the players in Match
Point AI can choose the direction in which they want to play the ball for
each normal shot and every serve and return. Normal shots in this context
include every forehand and backhand shot from the baseline. In figure
4.1 we show how many of the shots, tracked in the real-world dataset
between 2017 and 2023, were normal shots compared to other shot types
like slices, volleys, drop shots, lobs and other shots like overhead smashes
or half volleys.

In 80.77% of all the shots tracked in the dataset, the shot type was
either a forehand or a backhand groundstroke. This is the reason for only
including the direction selection of groundstrokes into Match Point AI
and not the different shot types.

• Fatigue: In our probabilities for making an error or hitting a winner
when playing a shot, we do not take the player’s fatigue into account.
During a rally in a real-world tennis match, one of the players might

38

4.1 Strengths and Limitations of Match Point AI

Norm
al sho

ts Slic
e

Volle
y

Drop
sho

ts
Lobs

Othe
rs

0

20

40

60

80

100

80.77

12.41
2.6 1.41 1.39 1.42

%

Figure 4.1: Shot Type Distribution of the Real-World Dataset

switch directions between every shot, making his opponent run, while
the player plays every shot comfortably from the same position. In a
real-world tennis match, this dynamic can influence the error probabilities,
because the more exhausted player is more likely to make an error. This
influence can not be extracted accurately enough from the dataset and
therefore, we did not include this aspect in Match Point AI.

These compromises are the biggest limitations in Match Point AI and with
them, a lot of the dynamics of a real-world tennis match are lost. The main
reason for most of these compromises is a lack of information. By including more
dynamics of a real-world tennis match, the results generated by Match Point AI
would be more valuable and meaningful for real-world tennis. However, when
modeling something as complex as the sport of tennis, making compromises is
a necessity. It is not possible and in our case also not necessary to consider
every aspect of the real sport of tennis, which will be shown in the following
sections.

The results of the experiment set 1, in which the Average Bot competes in 500
matches against the Djokovic Bot, show a match win rate of the Djokovic Bot of
82.6% (413 wins versus 87 losses). The real-world Novak Djokovic played a total
of 394 Matches on the professional men’s tennis tour between 2017 and 2023,
which is the time frame from which we analyzed the data set to extract the
probabilities for the Djokovic Bot. Out of those 394 matches, Novak Djokovic
won 336 matches which translates to an 85.3% match win rate, a difference to

39

4 Results and Evaluation

our experiment of 2.7%. Even with all the compromises made to model tennis
in Match Point AI, these results show a realistic difference in performance
between the Average and the Djokovic Bot in the simulator and it speaks to
the capability of Match Point AI to generate valuable and reasonable tennis
data. The difference of 2.7% can be caused by two factors. Firstly, the Average
Bots name is misleading. Almost 50% of the rallies analyzed for the Average
Bots behavior originate from matches of current and former top ten players
as we showed in figure 3.3. This means, that the extracted probabilities for
the Average Bot represent the behavior of a player that is better than average.
But with the real-world Djokovic playing as well as he does and reaching the
finals of almost every tournament he enters, he actually faces a lot of the other
top 10 players. So the Average Bots behaviour potentially represents the usual
opponent of Novak Djokovic quite well. Secondly, the probabilities used in
the Average Bot also include rallies of Novak Djokovic himself. This means,
during our first set of experiments, the Djokovic Bot also plays against himself,
at least to a certain degree. This could also explain the 2.7% difference in
the match-win rates. Considering the characteristics of tennis, which are not
modeled in Match Point AI, in addition to these two aspects, a difference in
match win performance of 2.7% between the Djokovic Bot and the real Novak
Djokovic is very small.

In table 4.1 we show the overall results of experiment set 2, in which different
adaptations of the MCTS algorithm compete against both fixed-strategy bots.
Each point win rate and match win rate pair corresponds to a simulation
consisting of 200 matches played in Match Point AI. The discussion about
the different performances regarding the selection and decision policies of the
MCTS agents will follow in a later section, but from these results, we can
already see interesting dynamics regarding our first research question.

The first observation we want to discuss is that the point win percentages
seem low when compared to the match win percentages. When looking at
the UCT/Greedy MCTS agents result when it is playing against the Average
Bot for example, we see that the agent wins 51.99% of all the points and
that corresponds to a 71% match win rate. When we look at the point- and
match-win percentages of some of the men’s real-world top tennis players,
however, we can see that those small point-win percentage differences do make
the difference in real-world tennis as well. Figure 4.2 shows the match win
data [16] and point win data [67] from five professional tennis players for all
matches played between 2017 and 2023. The ranking was taken on the 9th

40

4.1 Strengths and Limitations of Match Point AI

MCTS Agents vs. Opponent 1: Opponent 2:
Fixed Strategy Bots Average Bot Djokovic Bot

Selection Policy/ Point Win Match Win Point Win Match Win
Decision Policy Rate [%] Rate [%] Rate [%] Rate [%]
UCT/Greedy 51.99 71.00 49.65 46.50
UCT/UCT 50.10 50.50 46.48 13.50

Random/Greedy 52.14 69.50 49.03 39.00
Random/UCT 49.84 46.50 48.77 36.00
Greedy/Greedy 51.58 66.00 49.34 41.50
Greedy/UCT 49.99 47.50 45.84 15.00

Table 4.1: Win Percentages of MCTS Agents against Fixed Strategy Bots (Win
Rates of MCTS Agents out of 200 Matches)

of January 2024. This shows us, that the point-win to the match-win ratio
of the matches played in the match simulator between the MCTS agents and
the bots is plausible. Furthermore, we observe, that the point and match win
rates of the MCTS agents seem higher when they play against the Average Bot
compared to the point and match win rates when playing against the Djokovic
Bot.

Player Ranking Point Wins [%] Match Wins [%]

N. Djokovic 1 54.86 85.86
D. Medvedev 3 52.71 74.25

A. Zverev 6 52.57 72.03
C. Ruud 11 50.57 64.67
J. Struff 21 49.86 49.52

Table 4.2: Real-World Player Statistics

This is to be expected because we saw in the results of the 500 match simulations
in the experiment set 1, in which the two bots played against each other, that
the Djokovic Bot performed better than the Average Bot. The results of a
Chi-Squared test show a significant relationship between the total points won
by the agents and their opponent (p=0.0000). The agents win significantly
more points against the Average Bot than against the Djokovic Bot with a
small effect size (V=0.0267). With this result we can reject our hypothesis H01

41

4 Results and Evaluation

and accept the alternative Hypothesis H11, stating, that there is a significant
difference in the total points won by the MCTS Agents against the two bots.

In figure 4.2 we compare the rally length distribution of matches tracked
in the real-world dataset with the rally length distribution in the resulting
shot-by-shot data generated by the simulated matches of the MCTS agents
against the Average Bot. The blue bars represent the rally length distribution
in matches tracked in the real-world dataset and the red bars show the rally
length distribution of the simulated matches in Match Point AI.

1 3 5 7 9 11 13 15
0

5

10

15

20

Shots per Rally

D
is

tr
ib

ut
io

n
[%

]

Real-World Data
Simulated Matches

Figure 4.2: Rally Length Distribution

When comparing the rally length distribution in the real-world matches with
the the rally length distribution in the simulated matches of the MCTS agents
against the Average Bot, we see that in both cases the most frequent rally
length is two shots. In real-world matches, a rally has only two shots in 18.02%
of all rallies, and in our simulated matches, a rally is only two shots long in
17.5% of the cases. Furthermore, when looking at rallies with more than two
shots we can see that in both the simulations and the real-world matches,

42

4.1 Strengths and Limitations of Match Point AI

longer rallies occur less and less often. This is plausible because, with each
shot in a rally, there is a probability with which a shot terminates the rally, in
both the simulation matches and also in real-world tennis. For rallies with
more than two shots, we can observe that the distribution of those rallies has
slightly higher lengths in the simulated matches compared to the real-world
rally lengths. This can be explained by the shot selection compromise we
made during the development of Match Point AI. Players in Match Point AI
are not able to play drop shots, volleys, and overheads for example, which are
aggressive shots, that are more likely to terminate a rally than normal shots.
Therefore it is only natural, that rallies in Match Point AI are slightly longer
than rallies in real-world tennis. The results of a Mann-Whitney U Test on the
rally distributions show no significant difference between the real-world and
simulation rally lengths (p=0.895). This indicates, that the rallies generated in
the simulation matches in Match Point AI are reasonably long compared to
real-world tennis rallies. However, we want to address one last observation in
figure 4.2. Rallies that only consist of one shot occur in real-world tennis in
10.02% of all rallies whereas one-shot rallies in our simulations only occur with
6.23%. One-shot rallies only consist of a first-serve winner, also called an ace.
As soon as the returning player hits the ball, that would count as the second
shot in the rally, even if the return is an error. This means that in real-world
tennis it is easier to hit an ace, than in Match Point AI. This difference can
be caused by different aspects. On the one hand side, it is likely that not
being able to choose between different serves like kick serves or slice serves can
contribute to this difference. Also, the serving player in Match Point AI does
not know where the returning player positions himself before the serve. On
the other hand side, the serving player can not choose to take more risks at
specific serves by altering the serve speed or even by playing a first serve as
a second serve, which real-world players can do. All these aspects can cause
this difference in rally length distribution for one-shot rallies. Even though we
made compromises while developing Match Point AI, we can conclude that
the generated results show reasonable and plausible shot-by-shot tennis data.
However, by including more aspects of real-world tennis matches into Match
Point AI and by expanding the choices of the players in it, the generated
data would be more valuable for gaining insight into real-world tennis strategies.

43

4 Results and Evaluation

4.2 Analysis of Shot Patterns in Rally Openings

In the second research question, we address the possibility of gaining insight
into specific shot sequences in tennis, specifically in their occurrence and their
point win rates against specific players in Match Point AI. Because there are so
many possible shot sequences and scenarios in a rally of a tennis match, we only
look at a few specific situations. First, we are only looking at matches from the
MCTS agent using selection policy UCT and decision policy Greedy, with the
parameter settings of 10 simulation rallies and a C-value of

√
2. Furthermore,

we only consider matches, in which this agent played against the Djokovic Bot.
We then only look at rallies, in which the MCTS agent was serving. This data
then is split into two sets, the first one containing all the rallies, in which the
agent was serving a successful first serve and the second dataset containing
the rallies, which start with a successful second serve. This split is necessary
because whether a player hits a successful first serve or only a second serve has
a big influence on a rally’s dynamic and outcome. In 2022 for example, Novak
Djokovic won 76% of all rallies after a successful first serve and only 54% after
a successful second serve [67]. We then only look at rallies, in which there are
at least two shots after the successful serve, and then split these rallies again,
dependent on whether the serve was hit from the deuce side or advantage side of
the court. This difference was considered because of the shot encoding. When
a serve is hit in direction 4 from the deuce side, it would land in a right-handed
opponent’s forehand, whereas when it is hit in direction 4 from the ad side, it
would land in that opponent’s backhand (this dynamic can be seen in figure
3.1). This can influence the rally that follows and therefore is considered in
this shot pattern analysis. We end up with four datasets containing different
amounts of rallies, as shown in table 4.3, each representing one of the four
scenarios of interest.

Serve Type Serve Side Total Rally Count

First Serve Deuce Side 3.437
Advantage Side 3.779

Second Serve Deuce Side 2.070
Advantage Side 2.008

Table 4.3: Total Rally Count for Matches where MCTS Agent is serving against
Djokovic Bot

44

4.2 Analysis of Shot Patterns in Rally Openings

For every serve, the MCTS agent can choose between the three directions 4, 5,
and 6. After that, the return and the third shot can be played in directions
1, 2 and 3. The following four tables show the frequency with which specific
shot patterns were detected, as well as their point win rates. The MCTS agent
chooses the direction of the first and second serves as well as the direction of
the third shot. The return direction is chosen by the Djokovic Bot. This holds
for all of the following four tables. At this point, it is necessary to note, that
the point win rates are derived from very different sample sizes due to our
resulting data. Therefore we can not compare them directly. It is in the nature
of the MCTS algorithm to converge to specific actions. Those actions usually
yield higher rewards and therefore are visited more often than actions with
less promising rewards. This behavior results in unbalanced sample sizes. The
point win rate can still be an indicator of the algorithm’s capability of finding
successful shot patterns, not by comparing them with other win rates, but by
viewing them individually with regard to their shot pattern. Table 4.4 covers
the scenario in which the MCTS agent serves a successful first serve from the
deuce side of the court.

First Serve Return 3rd Shot Point Win
Direction Direction Direction Rate [%]

(Frequency) (Frequency) (Frequency)

1 (3) 0.00
1 (976) 2 (19) 47.37

3 (954) 53.35
1 (238) 55.04

4 (3.358) 2 (2057) 2 (268) 47.76
3 (1551) 52.93
1 (175) 57.71

3 (325) 2 (26) 34.62
3 (124) 44.36

5 (10) - - -
6 (69) - - -

Table 4.4: Direction Frequency and Point Win Rate after First Serve from
Deuce Side

Direction 4 is chosen 3.358 times, whereas direction 5 and 6 are only chosen
10 and 69 times. This shows a very fast convergence favoring direction 4 over

45

4 Results and Evaluation

the other directions. One could argue, that directions 5 and 6 are not being
explored enough and therefore it is interesting to see the influence of the C-value,
the exploration-exploitation trade-off parameter, in the UCT formula on this
convergence. The influence of different C-values will be discussed in chapter 4.5.
This fast convergence of the serves can be seen in all of our four scenarios. It is
worth mentioning, however, that the frequency in the following tables does not
include rallies that were simulated in the fourth phase of the algorithm. That
means that the rally 4 → 1 → 1 in table 4.4 actually has been played three
times in a match, but in the simulation phase, this shot sequence probably has
been visited hundreds of times. Both first serve scenarios converge to direction
4 (Table 4.4 and 4.5), whereas both second serve scenarios converge to direction
6 (Table 4.6 and 4.7). Due to the sample size of the actions, that the algorithm
did not converge to, we continue by only analyzing the shot patterns following
the serve directions 4 for first serves and 6 for second serves because these are
the shot direction that the algorithm chose the most frequent. After the first
serve, table 4.4 shows the return directions of the Djokovic Bot. Because this is
based on a fixed strategy, the frequency of those return directions is the result
of the probabilities for this situation, which were extracted from the real-world
dataset. The third shot direction is again chosen by the MCTS agent. We
can see a very clear convergence to direction 3 when the Djokovic Bot was
returning in direction 1. When Djokovic was returning in direction 2, we see
the same convergence in direction 3. When he was returning in direction 3
however, we can see that the MCTS agent did not converge to one direction
but was mixing directions 1 and 3.

Table 4.5 represents the rallies, in which the MCTS agent serves a first serve
from the advantage side. For all three return directions of the Djokovic Bot,
direction 2 was chosen by the MCTS agent the least. Return direction 1 was
followed up by the agent with a mix of shots in directions 1 and 3. The same
holds for the third shot when the Djokovic Bot played the return in direction
2. For return direction 3, the agent converged to direction 1. But the agent
mixed in a good amount of shots in direction 3.

46

4.2 Analysis of Shot Patterns in Rally Openings

First Serve Return 3rd Shot Point Win
Direction Direction Direction Rate [%]

(Frequency) (Frequency) (Frequency)

1 (69) 40.58
1 (127) 2 (13) 53.85

3 (45) 55.56
1 (546) 48.54

4 (3.173) 2 (1.248) 2 (183) 38.80
3 (519) 49.71
1 (1153) 44.23

3 (1.798) 2 (206) 37.38
3 (439) 30.98

5 (62) - - -
6 (544) - - -

Table 4.5: Direction Frequency and Point Win Rate after First Serve from
Advantage Side

Table 4.6 represents the rallies, in which the agent is opening with a second
serve from the deuce side. This time, the choice of direction of the serve is
converging to direction 6. We can see a clear convergence of the MCTS agent’s
behavior, favoring shots in direction 3 for rallies in which the Djokovic Bot is
returning in direction 2. When the bot is returning in direction 3, we again
can find a mix of shots in directions 1 and 3. For returns in direction 1 the
agent plays most of the shots in direction 2, as well as a fair amount of shots
in direction 3.

Finally, in 4.7 the shot patterns are shown for rallies, in which the MCTS agent
was serving a second serve from the advantage side of the court. For every
return direction of the Djokovic Bot in this scenario, we have a favorite shot
direction of the MCTS agent. But in each case, the agent is mixing in a fair
amount of shots in other directions. In case the bot returns in direction 1,
the agent plays most shots in direction 2 while mixing in shots in direction 1.
Returns in direction 2 are answered most commonly by shots in direction 1
while mixing in shots in direction 2 as well as 3. For returns in direction 3,
we can see that the agent plays a majority of shots in direction 1, while still
mixing in shots in direction 3. In this scenario, the agent never truly converges
to a single shot direction regardless of the return direction of the bot.

47

4 Results and Evaluation

Second Serve Return 3rd Shot Point Win
Direction Direction Direction Rate [%]

(Frequency) (Frequency) (Frequency)

4 (23) - - -
5 (17) - - -

1 (22) 63.64
1 (185) 2 (100) 44.00

3 (63) 53.97
1 (31) 58.07

6 (2.030) 2 (1.292) 2 (57) 59.65
3 (1.204) 51.66
1 (281) 52.31

3 (553) 2 (10) 30.00
3 (262) 50.00

Table 4.6: Direction Frequency and Point Win Rate after Second Serve from
Deuce Side

To summarize our findings of the shot pattern analysis, we show the most
frequent shot patterns per scenario in figure 4.3. An interesting observation
from this is, that the most frequent shot patterns after a first serve of the
MCTS agent is followed up by the shot, that presumably makes the opponent
run the most.

On the left court, for example, the serve is to the left of the left service box,
followed by the third shot to the far right of the court. The same happens
on the middle left court in that figure. The serve is going to the far right of
the right service box followed by a shot to the far left of the court. This shot
combination is certainly not new in the world of tennis. Playing the ball to the
open court, far away from the opponent, and trying to make the opponent run
to the ball is common sense in tennis because exhaustion and fatigue as well as
having to play a ball under pressure leads to more errors. This analysis shows,
that the MCTS algorithm is capable of finding reasonable strategies for ball
placement in tennis when it is applied to Match Point AI.

48

4.2 Analysis of Shot Patterns in Rally Openings

Second Serve Return 3rd Shot Point Win
Direction Direction Direction Rate [%]

(Frequency) (Frequency) (Frequency)

4 (176) - - -
5 (182) - - -

1 (79) 26.58
1 (235) 2 (121) 31.41

3 (35) 22.86
1 (511) 49.51

6 (1650) 2 (953) 2 (265) 40.38
3 (177) 49.15
1 (327) 45.87

3 (462) 2 (2) 50.00
3 (133) 51.13

Table 4.7: Direction Frequency and Point Win Rate after Second Serve from
Advantage Side

Figure 4.3: Most frequent Shot Patterns and Point Win Rates (left to right):
first serve from deuce side, first serve from advantage side, second
serve from deuce side, second serve from advantage side)

49

4 Results and Evaluation

4.3 Evaluation of different Selection Policies

In our third research question, we analyze the influence of different selection
policies, utilized in the selection phase in the MCTS algorithm, on the effec-
tiveness of winning points in Match Point AI against the two bots. Therefore,
we analyze the results of the experiment set two, especially in the relationship
between the point win rate of the MCTS agents and the three different selection
policies: Random, Greedy and UCT. At first, this is done without considering
the opponent or the decision policy. A Chi-Squared test was conducted and the
results show a significant relationship (p-value=0.0028) between the utilized
selection policy and the point win rate. Therefore the null hypothesis H02 can
be rejected and the alternative hypothesis H12 is accepted, which means there is
a significant relationship between the point win rate of the MCTS agent and its
selection policy. As a post-hoc test, we then perform a pairwise comparison of
the three different selection policies to see between which policies the significant
difference can be found. A Bonferroni-Holm correction was used to account
for the family-wise error rate. With a corrected significance value of 0.0017,
there is a significant difference between the two selection policies Greedy and
Random. Furthermore, the effect size of this relationship is analyzed according
to Cramer’s V with a DF of 2. The result of that test shows a small effect
size (V=0.0105) in this relationship. Examining these findings alongside the
data presented in table 4.8, we can conclude that the algorithm demonstrates
significantly better performance in winning points within Match Point AI when
employing selection policy Random compared to the use of selection policy
Greedy.

Selection Policy Greedy Random UCT

MCTS Agent 61.989 64.267 62.158
Bots 63.865 64.435 63.117

Table 4.8: Total Point Wins using different Selection Policies

No significant differences were found in the performance of the MCTS algorithm
when comparing the selection policies UCT and Random or UCT and Greedy.
The tests up to this point were conducted on a dataset representing match
simulations of the MCTS agents against both the Average Bot as well as the
Djokovic Bot. To analyze, if the influence of the three selection policies is
different depending on the two opponents, this dataset is split into two separate

50

4.4 Evaluation of Decision Policies

datasets. One containing all the simulated matches, that the different MCTS
agents played against the Djokovic Bot and the other dataset with all simulation
matches against the Average Bot. Two separate Chi-Squared tests were then
conducted on these datasets. This enables us to further analyze the influence
of different selection policies on the performance of the MCTS agents when
they are playing against a specific bot. The total point wins of the different
MCTS agents using the three selection policies against the two fixed-strategy
bots is shown in table 4.9.

Opponent Average Bot Djokovic Bot
Selection Policy Greedy Random UCT Greedy Random UCT

MCTS Agent 32.702 32.754 32.337 29.287 31.513 29.821
Bot 31.739 31.503 31.007 32.126 32.932 32.110

Table 4.9: Total Point Wins of MCTS Agents using different Selection Policies
against different Opponents

The results of the Chi-Squared test conducted for the dataset with the matches
against the Average Bot show no significant relationship between the total point
wins and the selection policy in use (p=0.5299). For the dataset containing all
the matches against the Djokovic Bot, results of the Chi-Squared test show a
significant relationship between selection policy and point winner (p=0.0001).
We then again tested this relationship in pairwise comparisons of all the selection
policies with the Bonferroni-Holm correction and found significant differences
between selection policy Random and Greedy as well as Random and UCT. In
both cases, the Random selection policy performed significantly better against
the Djokovic Bot. To analyze the effect sizes of the significant differences,
we again calculated Cramer’s V with a DF of 2. A small effect size is found
between selections policies Greedy and Random (V=0.0359) as well as between
Random and UCT (V=0.0303). The pairwise comparisons show no significant
relationship between the selection policies Greedy and UCT.

4.4 Evaluation of Decision Policies

The next research question aims at evaluating the influence of the different
decision policies Greedy and UCT on the performance of the algorithm to win

51

4 Results and Evaluation

points against the two bots. In table 4.10 the total points won by the agents
utilizing the two decision policies against both bots are displayed.

Decision Policy Greedy UCT

MCTS Agent 96.893 91.521
Bots 94.588 96.829

Table 4.10: Total Point Wins using different Decision Policies.

Another Chi-Squared test was conducted on this data and a significant rela-
tionship between the point wins and the decision policy was found (p=0.0000).
With this result we can reject the null hypothesis H03 and accept the alterna-
tive hypothesis H13, stating that there is a significant relationship between the
total points won and the utilized decision policy. With the calculation and
interpretation of Cramer’s V, we can also say, that this relationship has a small
effect size (V=0.0216). In combination with the results in table 4.10 we can see,
that the decision policy Greedy is performing significantly better compared to
decision policy UCT. We then again split the dataset into two separate sets to
see if this relationship is dependent on the opponent of the MCTS agents. The
first dataset only consists of the results of the matches against the Average Bot
and the second only contains the results of the matches against the Djokovic
Bot. In table 4.11 the total point wins of the MCTS agents using the different
decision policies against the two bots is shown.

Opponent Average Bot Djokovic Bot
Decision Policy Greedy UCT Greedy UCT

MCTS Agent 48.828 48.965 48.065 42.556
Bot 45.243 49.006 49.345 47.823

Table 4.11: Total Point Wins of MCTS Agents employing different Decision
Policies against different opponents

For both of these datasets, we then perform Chi-Squared tests, to analyze
the differences in the performance of the decision policy against the two bots.
We found a significant relationship between the point wins and the decision
policy in the dataset containing only the matches against the Average Bot
(p=0.0000). When looking at Cramer’s V we can see that there is a small effect
in this relationship (V=0.0193). Against the Average Bot, the decision policy

52

4.5 Parameter Dependency of the MCTS Algorithm

Greedy is performing significantly better compared to the Decision Policy UCT.
This significant relationship is also found in the dataset with the results of the
matches against the Djokovic Bot. The Chi-Squared test shows a significant
difference in using the different decision policies Greedy and UCT (p = 0.0000)
when playing matches against the Djokovic Bot. This relationship again has a
small effect (V=0.0226), in which the Greedy approach performs significantly
better compared to the UCT policy.

4.5 Parameter Dependency of the MCTS
Algorithm

To analyze the influence of different parameter settings on the MCTS algorithms
performance, we use the MCTS agent employing the selection policy UCT
and decision policy Greedy. The choice of the selection policy is due to the
adaptability of the UCT formula. Changing the C-value in that formula
influences the trade-off between exploration and exploitation. In our experiment
set three, we compare three different C-Values:

√
2 − 0.5,

√
2 and

√
2 + 0.5

in their influence on the MCTS agents ability to win points in Match Point
AI. The decision policy is chosen, because it showed a better performance
compared to the UCT decision policy in our previous analyses. Another
interesting parameter is the number of simulations the algorithm runs through
during the simulation phase. For this parameter, we also test three different
values: 5, 10, and 15. Each of those nine different, parameter adapted, MCTS
agents competes in 100 matches against the Average Bot in our experiment set
three. From analyzing the resulting data, we evaluate the influence of different
parameter settings on the MCTS algorithm’s performance. Table 4.12 shows
the resulting point and match win rates of the adapted MCTS agent against
the Average Bot.

Just looking at those results, it is already possible to see a slightly better point
win rate for a C-value of

√
2+0.5 compared to the other C-values. The number

of simulations on the other hand does not seem to influence the point win rates
in a specific way. To confirm or reject these observations, we again conduct
Chi-Squared tests, using the contingency table 4.13, where A represents the
MCTS agent and B the fixed strategy bot.

53

4 Results and Evaluation

MCTS UCT/Greedy Agent Average Bot
C-Value Number of Point Win Match Win

Simulations Rate [%] Rate [%]
5 51.51 68.00√

2− 0.5 10 51.34 64.00
15 50.53 55.00
5 51.07 66.00√

2 10 50.70 58.00
15 51.71 63.00
5 51.98 72.00√

2 + 0.5 10 52.47 77.00
15 52.26 75.00

Table 4.12: Win percentages of MCTS UCT/Greedy Agent with parameter
adaptations against Average Bot

N Simus 5 10 15
Point Winner A B A B A B

C-Value√
2− 0.5 8.720 8.210 8.404 7.965 8.320 8.146√

2 8.313 7.968 8.158 7.933 8.318 7.771√
2 + 0.5 8.425 7.784 8.511 7.711 8.016 7.324

Table 4.13: Contingency Table Parameter dependency

First, we look at the relationship between point win rate and the number of
simulations. The result of the Chi-Squared test does not show a significant
influence of the different simulation numbers on the point win rate (p=0.1075).
With these results, we can accept our null hypothesis H05 and reject its alter-
native H15. This can also be seen in figure 4.4, where the blue and red curves,
representing 5 and 10 simulations, have a very similar trajectory. The green
curve has a slightly different trajectory, but the difference is not significant as
shown by the Chi-Squared test.

In figure 4.4 we can also confirm our observation, that the point win rate for
a C-value of

√
2 + 0.5 seems higher compared to the other two C-Values. To

analyze this relationship we conduct another Chi-Squared test. The results show
a significant relationship between C-value and point win rate (p=0.0009). The

54

4.5 Parameter Dependency of the MCTS Algorithm

1 1.2 1.4 1.6 1.8 2

51

52

C-Value

P
oi

nt
W

in
R

at
e

[%
]

Rollouts: 5
Rollouts: 10
Rollouts: 15

Figure 4.4: Point Win Rates of different UCT/Greedy MCTS Adaptations
against the Average Bot

null hypothesis H04 can be rejected and we accept our alternative hypothesis
H14. As a post-hoc test, we then perform a pairwise comparison with Bonferroni-
Holm corrected significance values. Results of the pairwise comparison show
significant differences between the C-values

√
2+0.5 and

√
2 as well as

√
2+0.5

and
√
2− 0.5. The effect size (DF=2) of the difference between the C-Values√

2 + 0.5 and
√
2− 0.5 is found to be a medium effect size (V=0.0727), and

the same holds for the effect size between
√
2 + 0.5 and

√
2 (V=0.0734). We

can conclude, that for the application of the UCT/Greedy MCTS algorithm to
Match Point AI, the number of simulations tested does not have a significant
influence on the performance of the MCTS algorithm. The algorithm does
show a significantly better performance in winning points in the simulated
matches against the Average Bot for a C-value of

√
2 + 0.5, compared to

√
2

and
√
2− 0.5.

55

5 Summary and Future Work

Starting with an introduction, in which we state our motivation and goal as
well as the research questions and their hypotheses, this thesis continues with
an introduction to RL and presents different algorithms in the field and their
applications to various problems. We then go on to present the basic principles
of the MCTS algorithm and introduce related studies, in which the algorithm
has been applied to board and computer games, real-world problems, and
sports. Here we point out, where our research gap lies and continue by giving a
short introduction to the sport of tennis, in which we explain important aspects
and some terminology relevant to this thesis. To apply different adaptations of
the MCTS algorithm to tennis, this thesis then presents the newly developed
tennis match simulation environment, Match Point AI. We showcase which
aspects of real-world tennis are included in Match Point AI and which were
neglected and why. The thesis then continues by describing the MCTS agents
and the different policies and adaptations they can utilize in Match Point AI.
The MCTS algorithm needs an opponent against which it can learn to play
tennis. Therefore we created two different fixed-strategy bots, whose behaviour
in Match Point AI is based on situation-dependent probabilities, which were
extracted from a real-world shot-by-shot tennis dataset. These Bots can be
considered as training partners to our MCTS based agents. Before presenting
our results, we outline the experiment settings used to address the different
research questions and then explain the methodology utilized for the statistical
evaluation of the generated results.

In the results of our first research question, we discuss the strengths and
limitations of Match Point AI. The biggest limitation here is missing data.
Information about ball velocities of tennis shots and player positions and
movements on the court are not tracked in the dataset we used. It is safe to say
that Match Point AI would generate better data in terms of both quality and
quantity when more precise data is included in the design of the environment
and the bot’s behaviors. For our purpose of trying to apply MCTS to tennis,

57

5 Summary and Future Work

however, Match Point AI proved to be a suitable environment. Despite its
limitations, Match Point AI can generate valuable shot-by-shot tennis data,
when we simulated matches between the MCTS agents and the fixed-strategy
bots. In the resulting data, a plausible relationship between point and match
win rates can be found. When we let the Djokovic Bot play against the Average
Bot, his match win rate is close to the real-world Djokovic’s match win rate in
the same time frame. Also, the rally length distribution between the generated
data and the real-world data is not significantly different. With the analysis
conducted to answer our second research question, we found the most frequent
shot patterns at the beginning of rallies, in which the MCTS UCT/Greedy agent
was serving against the Djokovic Bot. The results show the shot directions,
which are chosen most often by the agent, and the corresponding point win
rates. The agent’s strategy seems to put the opponent under pressure, by
letting him run from one corner of the court to the other without playing
the ball in the same direction twice in a row. We also discover that in some
scenarios, the algorithm converges not only to one direction, which would be
easy for an opponent to anticipate, but utilizes mixed strategies by varying the
shot directions in similar situations. We can conclude that the MCTS agent’s
behavior is converging to specific actions in specific situations. With that, he
is able to find strategies in Match Point AI, which are plausible strategies for
real-world tennis as well. This also confirms our answer to research question
one, in which we explain why Match Point AI can generate realistic tennis data.
In the third research question, we evaluate different adaptations of the MCTS
algorithm. We specifically analyze the algorithm’s performance, when it is using
the three different selection policies, UCT, Greedy, and Random. In matches
against the Djokovic Bot, the MCTS agent won significantly more points when
utilizing the Random selection policy compared to the two other selection
policies UCT and Greedy. In matches against the Average Bot, however, there
is no significant difference in the points won by the agents using the different
selection policies. Similarly to research question three, in research question
four we evaluate different policies utilized by the MCTS agents. This time we
compare the decision policies Greedy and UCT in their ability to win points
against the Bots. Results show, that against both Bots, the agents using
decision policy Greedy win significantly more points than the agents using
decision policy UCT. In research question five we adapt two parameters of the
MCTS UCT/Greedy agent and test the adapted agents against the Average
Bot. Firstly, we use three different values for the number of simulations, which

58

the algorithm conducts in the simulation phase. Our results showed, that
this adaptation has no significant influence on the point win rate of the agent.
Secondly, we use three different C-values in the UCT formula. Here we find a
significantly better performance in winning points of the MCTS agent when it is
using a C-value of

√
2+ 0.5, compared to the lower C-values tested. This result

indicates, that in our test case, a preference for exploration over exploitation in
the selection phase yields a better performance of the MCTS agent in Match
Point AI.

In this thesis, we show how the MCTS algorithm can be applied to the decision-
making processes in tennis, by introducing the tennis simulator Match Point
AI. Even though the environment is capable of generating plausible tennis
data, it still offers a lot of potential for future improvements. Most of these
improvements, however, are only possible by including more and better tennis
data. The dataset utilized for this thesis from the match charting project is a
great source of tennis data and we have not yet exploited its full potential, but
it also has limits. For example, we could include more shot-type options for
our bots and agents such as drop shots, lobs, and volleys based on the match
charting project data, but the dataset is limited when it comes to information
about ball velocities or player movements and positions on the court. There are
however other ways of tracking tennis data, which can already keep track of the
data automatically and more precise than the crowd-sourced match charting
project, such as SwingVision for example. SwingVision is an application, which
can track precise shot placements, shot types, and ball velocities live, only
using a smartphone camera. Another example is electronic line calling in tennis,
which nowadays replaces line judges at major tournaments and already tracks
ball placement down to the millimeter. The problem with these technologies is,
that the resulting data is not made public. With data like that, the capabilities
of Match Point AI would increase drastically and the bot strategies would
represent the real-world player’s behavior much more precisely. In this thesis,
we also analyze the shot placement strategies of one of the MCTS agents against
the Djokovic Bot. It would also be very interesting to see, if the agents come up
with different strategies against different Bots, mirroring other player’s behavior
than that of Novak Djokovic, because the best strategy to win against Djokovic
is probably not the best strategy to win against Rafael Nadal. The shot pattern
analysis was conducted for very specific scenarios in a tennis match. Tennis and
also the resulting data of Match Point AI offers a wide range of other scenarios,
that might be interesting to explore as well. In this thesis, we then evaluate

59

5 Summary and Future Work

the MCTS algorithm when it is applied to the decision-making processes in
tennis. We analyze the influence of different policies and different parameter
settings in the MCTS algorithm on its performance in winning points in Match
Point AI. There are many policies and values for parameters that are yet to be
tested, to truly find the best adaptation of the MCTS algorithm when applied
to tennis. There also exist interesting approaches, in which MCTS is combined
with evolutionary algorithms [1] or neural networks [55]. The results show that
this can improve the performance of the algorithm as well. The effect of these
combinations on the agent’s performance in Match Point AI would also be
very interesting to analyze.

60

Bibliography

[1] Hendrik Baier and Peter I. Cowling. Evolutionary mcts for multi-action
adversarial games. In 2018 IEEE Conference on Computational Intelligence
and Games (CIG), pages 1–8, 2018.

[2] Radha-Krishna Balla and Alan Fern. Uct for tactical assault planning in
real-time strategy games. pages 40–45, 01 2009.

[3] C. C. Battaile, D. J. Srolovitz, and J. E. Butler. A kinetic monte carlo
method for the atomic-scale simulation of chemical vapor deposition:
Application to diamond. Journal of Applied Physics, 82(12):5705–5712,
1997.

[4] Donald F. Beal and Martin C. Smith. Temporal difference learning applied
to game playing and the results of application to shogi. Theoretical
Computer Science, 252(1):105–119, 2001. CG’98.

[5] Richard Bellman. A markovian decision process. Journal of Mathematics
and Mechanics, 6(5):679–684, 1957.

[6] M. Ryan Rodenberg Benjamin Wright and Jeff Sackmann. Incentives
in best of n contests: Quasi-simpson’s paradox in tennis. International
Journal of Performance Analysis in Sport, 13(3):790–802, 2013.

[7] Guillaume Chaslot, Mark Winands, H. Herik, Jos Uiterwijk, and Bruno
Bouzy. Progressive strategies for monte-carlo tree search. New Mathematics
and Natural Computation, 04:343–357, 11 2008.

[8] R.R. Chen and S. Meyn. Value iteration and optimization of multiclass
queueing networks. Queueing Systems, 32:65–97, 1999.

[9] Zhengxing Chen, Truong-Huy D Nguyen, Yuyu Xu, Christopher Amato,
Seth Cooper, Yizhou Sun, and Magy Seif El-Nasr. The art of drafting: A
team-oriented hero recommendation system for multiplayer online battle
arena games. In RecSys ’18: Proceedings of the 12th ACM Conference on
Recommender Systems, pages 200–208, 2018.

61

Bibliography

[10] Michael Chung, Michael Buro, and Jonathan Schaeffer. Monte carlo
planning in rts games. In IEEE Conference on Computational Intelligence
and Games, 2005.

[11] Jacob Cohen. Statistical power and analysis for the behavioral sciences.
Lawrence Erlbaum Associates, Hillsdale, NJ, 2nd edition, 1988.

[12] Rémi Coulom. Efficient selectivity and backup operators in monte-carlo
tree search. In International conference on computers and games, pages
72–83. Springer, 2006.

[13] Harald Cramér. Mathematical Methods of Statistics. Princeton University
Press, Princeton, 1946. Chapter 21. The two-dimensional case.

[14] Felippe Schmoeller da Roza. Components of a reinforcement learning
framework, September 2023. Published on September 12, 2023. Accessed
on February 5, 2024.

[15] Damien Ernst, Mevludin Glavic, Pierre Geurts, and Louis Wehenkel.
Approximate value iteration in the reinforcement learning context. applica-
tion to electrical power system control. International Journal of Emerging
Electric Power Systems, 3(1), 2005.

[16] ESPN. Tennis rankings, 2024. Accessed: 9 January 2024.

[17] Iván Francisco-Valencia, José Raymundo Marcial-Romero, and Rosa María
Valdovinos-Rosas. A comparison between ucb and ucb-tuned as selection
policies in ggp. Journal of Intelligent & Fuzzy Systems, 36(5):5073–5079,
January 1 2019.

[18] Edgar Galván, Gavin Simpson, and Fred Valdez Ameneyro. Evolving
the mcts upper confidence bounds for trees using a semantic-inspired
evolutionary algorithm in the game of carcassonne. IEEE Transactions on
Games, 15(3):420–429, 2023.

[19] Jacob Gollub. Producing Win Probabilities for Professional Tennis Matches
from any Score. PhD thesis, 2019.

[20] Benjamin Gravell, Karthik Ganapathy, and Tyler Summers. Policy itera-
tion for linear quadratic games with stochastic parameters. IEEE Control
Systems Letters, 5(1):307–312, 2021.

[21] Stefan Freyr Gudmundsson and Yngvi Björnsson. Mcts: improved action
selection techniques for deterministic games. In Proceedings of the IJCAI-11
Workshop on General Game Playing (GIGA’11), pages 23–30, 2011.

62

Bibliography

[22] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network
structure, dynamics, and function using networkx. In Gaël Varoquaux,
Travis Vaught, and Jarrod Millman, editors, Proceedings of the 7th Python
in Science Conference, pages 11 – 15, Pasadena, CA USA, 2008.

[23] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gom-
mers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebas-
tian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer,
Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández
del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin
Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph
Gohlke, and Travis E. Oliphant. Array programming with NumPy. Nature,
585(7825):357–362, September 2020.

[24] S. Holm. A simple sequentially rejective multiple test procedure. Scandi-
navian Journal of Statistics, 6(2):65–70, 1979.

[25] R.A. Howard. Dynamic programming and Markov processes. Technology
Press of Massachusetts Institute of Technology, 1960.

[26] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in
Science & Engineering, 9(3):90–95, 2007.

[27] Emil Juul Jacobsen, Rasmus Greve, and Julian Togelius. Monte mario:
Platforming with mcts. In Proceedings of the 2014 Annual Conference on
Genetic and Evolutionary Computation, GECCO ’14, page 293–300, New
York, NY, USA, 2014. Association for Computing Machinery.

[28] Corwin Joy, Phelim P. Boyle, and Ken Seng Tan. Quasi-monte carlo
methods in numerical finance. Management Science, 42(6):926–938, 1996.

[29] Chanaka Keerthisinghe, Gregor Verbič, and Archie C. Chapman. A fast
technique for smart home management: Adp with temporal difference
learning. IEEE Transactions on Smart Grid, 9(4):3291–3303, 2018.

[30] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning.
In Johannes Fürnkranz, Tobias Scheffer, and Myra Spiliopoulou, editors,
Machine Learning: ECML 2006, pages 282–293, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

[31] Kennard Laviers and Gita Sukthankar. A monte carlo approach for football
play generation. In Proceedings of the 6th AAAI Conference on Artificial

63

Bibliography

Intelligence and Interactive Digital Entertainment, AIIDE 2010, pages
150–155. AAAI, October 11–13 2010.

[32] Machine Learning. Final project report: Real time tennis match prediction
using machine learning. 2017.

[33] Kexin Li, Qianwang Deng, Like Zhang, Qing Fan, Guiliang Gong, and
Sun Ding. An effective mcts-based algorithm for minimizing makespan
in dynamic flexible job shop scheduling problem. Computers Industrial
Engineering, 155:107211, 2021.

[34] Yuewen Li, Xiaoling Wang, Qi Kang, Zheng Fan, and Shuaiyu Yao. An
mcts-based solution approach to solve large-scale airline crew pairing prob-
lems. IEEE Transactions on Intelligent Transportation Systems, 24(5):5477–
5488, 2023.

[35] Francesco Lisi, Matteo Grigoletto, and Mirko G Briglia. On the distribution
of rally length in professional tennis matches. 2023.

[36] Francesco Lisi, Matteo Grigoletto, and Tommaso Canesso. Winning tennis
matches with fewer points or games than the opponent. pages 313–324,
2019. 1 Jan. 2019.

[37] X. Liu and A. Fotouhi. Formula-e race strategy development using artifi-
cial neural networks and monte carlo tree search. Neural Computing &
Applications, 32:15191–15207, 2020.

[38] Yang Liu, Zhanpeng Jiang, Lichao Hao, Zuoxia Xing, Mingyang Chen, and
Pengfei Zhang. Data-driven robust value iteration control with application
to wind turbine pitch control. Optimal Control Applications and Methods,
44(2):637–646, 2023.

[39] Travis Mandel, Yun-En Liu, Sergey Levine, Emma Brunskill, and Zoran
Popovic. Offline policy evaluation across representations with applications
to educational games. In AAMAS, volume 1077, 2014.

[40] Jacek Mańdziuk. MCTS/UCT in Solving Real-Life Problems, pages 277–
292. Springer International Publishing, Cham, 2018.

[41] Nicholas Metropolis. The beginning of the monte carlo method. Los
Alamos Science Special Issue, 15:125–130, 1987.

[42] Nicholas Metropolis and S. Ulam. The monte carlo method. Journal of the
American Statistical Association, 44(247):335–341, 1949. PMID: 18139350.

64

Bibliography

[43] Rahul Reddy Nadikattu. Implementation of new ways of artificial intelli-
gence in sports. Journal of Xidian University, 14(5):5983–5997, 2020.

[44] Katsuki Ohto and Tetsuro Tanaka. A curling agent based on the monte-
carlo tree search considering the similarity of the best action among similar
states. In Mark H.M. Winands, H. Jaap van den Herik, and Walter A.
Kosters, editors, Advances in Computer Games, pages 151–164, Cham,
2017. Springer International Publishing.

[45] Karl Pearson. On the criterion that a given system of derivations from
the probable in the case of a correlated system of variables is such that it
can be reasonably supposed to have arisen from random sampling. The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science, 50(5):157–175, 1900.

[46] Pierre Perick, David L. St-Pierre, Francis Maes, and Damien Ernst. Com-
parison of different selection strategies in monte-carlo tree search for the
game of tron. In 2012 IEEE Conference on Computational Intelligence
and Games (CIG), pages 242–249, 2012.

[47] D. E. Raeside. Monte carlo principles and applications. Phys. Med. Biol.,
21:181–197, 1976.

[48] G Roelofs. Monte carlo tree search in a modern board game framework.
Research paper available at umimaas. nl, 2012.

[49] Leonardo Rossi, Mark H. M. Winands, and Christoph Butenweg. Monte
carlo tree search as an intelligent search tool in structural design problems.
Engineering with Computers, 38(4):3219–3236, August 2022.

[50] Jeff Sackmann. Tennis match charting project. www.tennisabstract.
com/charting/meta.html, 2023.

[51] Bruno Scherrer, Mohammad Ghavamzadeh, Victor Gabillon, Boris Lesner,
and Matthieu Geist. Approximate modified policy iteration and its ap-
plication to the game of tetris. J. Mach. Learn. Res., 16(49):1629–1676,
2015.

[52] Skipper Seabold and Josef Perktold. statsmodels: Econometric and statis-
tical modeling with python. In 9th Python in Science Conference, 2010.

[53] Nick Sephton, Peter I. Cowling, and Nicholas H. Slaven. An experimental
study of action selection mechanisms to create an entertaining opponent. In

65

www.tennisabstract.com/charting/meta.html
www.tennisabstract.com/charting/meta.html

Bibliography

2015 IEEE Conference on Computational Intelligence and Games (CIG),
pages 122–129, 2015.

[54] Pete Shinners. Pygame. http://pygame.org/, 2011.

[55] David Silver, Aja Huang, Christopher J. Maddison, Arthur Guez, Lau-
rent Sifre, George van den Driessche, Julian Schrittwieser, Ioannis
Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman, Do-
minik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy
Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis
Hassabis. Mastering the game of go with deep neural networks and tree
search. Nature, 529:484–503, 2016.

[56] Dennis J. N. J. Soemers, Chiara F. Sironi, Torsten Schuster, and Mark
H. M. Winands. Enhancements for real-time monte-carlo tree search in
general video game playing. In 2016 IEEE Conference on Computational
Intelligence and Games (CIG), pages 1–8, 2016.

[57] Ruizhuo Song and Liao Zhu. Stable value iteration for two-player zero-
sum game of discrete-time nonlinear systems based on adaptive dynamic
programming. Neurocomputing, 340:180–195, 2019.

[58] Ole Stenzel, L. Jan Anton Koster, Ralf Thiedmann, Stefan D. Oosterhout,
Rene A. J. Janssen, and Volker Schmidt. A new approach to model-based
simulation of disordered polymer blend solar cells. Advanced Functional
Materials, 22(6):1236–1244, March 2012.

[59] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An
Introduction. A Bradford Book, The MIT Press, Cambridge, Massachusetts;
London, England, 2015.

[60] István Szita, Guillaume Chaslot, and Pieter Spronck. Monte-carlo tree
search in settlers of catan. In H. Jaap van den Herik and Pieter Spronck,
editors, Advances in Computer Games, pages 21–32, Berlin, Heidelberg,
2010. Springer Berlin Heidelberg.

[61] Marcin Szubert and Wojciech Jaśkowski. Temporal difference learning
of n-tuple networks for the game 2048. In 2014 IEEE Conference on
Computational Intelligence and Games, pages 1–8, 2014.

[62] Jun Tao, Gui Wu, Zhentong Yi, and Peng Zeng. Optimization and
improvement for the game 2048 based on the mcts algorithm. In 2020
Chinese Control And Decision Conference (CCDC), pages 235–239, 2020.

66

http://pygame.org/

Bibliography

[63] Antonio Terroba, Walter Kosters, Javier Varona, and Cristina S. Manresa-
Yee. Finding optimal strategies in tennis from video sequences. In-
ternational Journal of Pattern Recognition and Artificial Intelligence,
27(06):1355010, 2013.

[64] Gerald Tesauro. Temporal difference learning of backgammon strategy. In
Derek Sleeman and Peter Edwards, editors, Machine Learning Proceedings
1992, pages 451–457. Morgan Kaufmann, San Francisco (CA), 1992.

[65] Ralf Thiedmann, Ole Stenzel, Aaron Spettl, Paul R. Shearing, Stephen J.
Harris, Nigel P. Brandon, and Volker Schmidt. Stochastic simulation
model for the 3d morphology of composite materials in li–ion batteries.
Computational Materials Science, 50(12):3365–3376, 2011.

[66] Sofiane Touati, Mohammed Said Radjef, and Lakhdar Sais. A bayesian
monte carlo method for computing the shapley value: Application to
weighted voting and bin packing games. Computers Operations Research,
125:105094, 2021.

[67] ATP Tour. Atp players, 2024. Accessed: 2024/01/09.

[68] Otakar Trunda and Roman Barták. Using monte carlo tree search to solve
planning problems in transportation domains. In Félix Castro, Alexander
Gelbukh, and Miguel González, editors, Advances in Soft Computing and
Its Applications, pages 435–449, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

[69] USTA. Tennis scoring rules, 2024. Accessed: 2024/03/07.

[70] Kyriakos G. Vamvoudakis and F. L. Lewis. Policy iteration algorithm for
distributed networks and graphical games. In 2011 50th IEEE Conference
on Decision and Control and European Control Conference, pages 128–135,
2011.

[71] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual.
CreateSpace, Scotts Valley, CA, 2009.

[72] Wes McKinney. Data Structures for Statistical Computing in Python. In
Stéfan van der Walt and Jarrod Millman, editors, Proceedings of the 9th
Python in Science Conference, pages 56 – 61, 2010.

[73] I-Chen Wu, Hsin-Ti Tsai, Hung-Hsuan Lin, Yi-Shan Lin, Chieh-Min Chang,
and Ping-Hung Lin. Temporal difference learning for connect6. In H. Jaap

67

Bibliography

van den Herik and Aske Plaat, editors, Advances in Computer Games,
pages 121–133, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[74] Maciej Świechowski, Tomasz Tajmajer, and Andrzej Janusz. Improving
hearthstone ai by combining mcts and supervised learning algorithms. In
2018 IEEE Conference on Computational Intelligence and Games (CIG),
pages 1–8, 2018.

68

Declaration of Authorship

I hereby declare that this thesis was created by me and me alone using only
the stated sources and tools.

Carlo Nübel Magdeburg, 12.03.2024

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Research Questions and Hypotheses
	Thesis Structure

	Related Work
	Reinforcement Learning
	Markov Decision Processes
	Reward and Return
	State Value functions vs. Action Value functions
	rl Algorithms and their Applications

	Basic Principles of mcts
	Game Trees
	Four Phases of the Algorithm
	Selection Policies
	Decision Policies

	Applications of the mcts algorithm
	Tennis - Rules and Terminology

	mcts in the Tennis Simulator - Match Point AI
	Match Point AI
	mcts agents in Match Point AI
	Data-Driven Bot Strategies
	Novak Djokovic Bot
	Average Bot

	Experiments
	Statistical Analysis of the Results
	Software

	Results and Evaluation
	Strengths and Limitations of Match Point AI
	Analysis of Shot Patterns in Rally Openings
	Evaluation of different Selection Policies
	Evaluation of Decision Policies
	Parameter Dependency of the mcts Algorithm

	Summary and Future Work
	Bibliography

