
Otto von Guericke University Magdeburg

Faculty of Computer Science

Master Thesis

Evolutionary Multi-Objective Optimization
for Mixed-Model Assembly Line Balancing

Problems

Author:

Iffat Jamil

October 5, 2022

Advisors:

Prof. Dr.-Ing. habil. Sanaz Mostaghim
Chair of Computational Intelligence

Otto von Guericke University Magdeburg

Jens Weise, M.Sc.
Computational Intelligence

Otto von Guericke University Magdeburg

Jamil, Iffat:
Evolutionary Multi-Objective Optimization for Mixed-Model Assembly Line Balancing
Problems
Master Thesis, Otto von Guericke University Magdeburg, 2022.

Abstract

Assembly lines are a crucial aspect and a necessity in today’s assembly and manu-
facturing processes. Due to the rising competition of today’s industries and global
market, businesses increase production versatility by lowering batch sizes and diver-
sifying current products. Despite mixed or multi-model assembly lines being more
prevalent in practice, the literature has far more research on single-model assembly
lines. Still, there are a good number of research papers on mixed and multi-model
assembly lines, but more work needs to be done in this direction. Moreover, the
techniques to solve assembly line balancing problems are mostly limited to exact
methods and heuristics as compared to the more recently focused meta-heuristic
techniques, which show promising results. More research and experimentation is
required in this area.

This thesis contributes to fill the mentioned gaps in the literature. A mixed-model
assembly line with station restrictions is being considered, and evolutionary opti-
mization techniques are used to balance the assembly line. In order to have high
production rate while making the process time and cost-effective, multiple objectives
have to be considered simultaneously. Here, four objectives have been taken into
account: cycle time, number of workstations, smooth task distribution and total
idle time. This thesis addresses two main challenges, modelling of the mixed-model
assembly line into a single-model assembly line and optimization of the assembly
process to make it cost and time efficient in the presence of workstation restrictions.

Option mix joint precedence graph is used to tackle the challenges of converting
mixed-model assembly lines into single-model assembly lines. For optimization, the
multi-objective evolutionary algorithms NSGA-II and NSGA-III are used. Several
problems are taken into consideration for experimentation, including three famous
benchmark problems (Bowman, Buxey and WeeMag) alongside two mixed-model
assembly line problems. Experiments show that both algorithms can deliver promising
results with the proposed methodology.

Acknowledgments

I would like to dedicate this work to my mother, Shafqat-un-Nisa, for her support
and courage to stand against all the cultural norms for my education. I would also
like to recognize the invaluable assistance and moral support of my supervisor, Jens
Weise, and of Thomas Seidelmann.

Contents

List of Figures ix

List of Tables xiii

List of Acronyms xv

1 Introduction 1

2 Background 5
2.1 Optimization . 5
2.2 Multi-Criteria Decision Making . 6
2.3 Multi-Objective Optimization . 7
2.4 Multi-Modal Problems . 9
2.5 Multi-Objective Optimization Terminologies 9
2.6 Multi-Objective Optimization Techniques 11
2.7 Evolutionary Algorithms . 12
2.8 Multi-Objective Evolutionary Algorithms 12
2.9 Constraint Handling . 13

3 Literature Review 15
3.1 Assembly Line . 15
3.2 Assembly Line Balancing Problem . 15
3.3 Classification of Assembly Line Balancing Problems 16

3.3.1 Classification According to Scholl and Becker 17
3.3.2 Classification According to Baybars 17

3.4 Assembly Line Layouts . 19
3.5 Precedence Graph . 22
3.6 Joint Precedence Graph . 23
3.7 State-of-the-Art Methods . 23

3.7.1 Exact . 23
3.7.2 Heuristic Approaches . 24
3.7.3 Meta-Heuristics Approaches . 24

4 Problem Formulation 25
4.1 Important Terminologies in ALBP . 25
4.2 Presumptions . 26
4.3 The Decision Variables . 27
4.4 Constraints . 27

viii Contents

4.5 Precedence Constraints . 28
4.6 Station Restrictions . 28
4.7 Objective Functions . 29

5 Proposed Methodology 33
5.1 Option-based Joint Precedence Graph . 33
5.2 Multi-Objective Evolutionary Algorithms 37

5.2.1 NSGA-II . 37
5.2.2 NSGA-III . 38
5.2.3 Components of the Algorithms 40

6 Results and Analysis 43
6.1 The Bowman Benchmark Problem . 44

6.1.1 Results for the Multi-Objectives Case 44
6.1.2 Results for the Many-Objectives Case 46

6.2 The Buxey Benchmark Problem . 48
6.2.1 Results for the Multi-Objectives Case 48
6.2.2 Results for the Many-Objectives Case 50

6.3 The WeeMag Benchmark Problem . 52
6.3.1 Results for Multi-Objectives Case 53
6.3.2 Results for Many-Objectives Case 54

6.4 The Mixed-Model Camera Manufacturing Problem 56
6.4.1 Results for the Multi-Objectives Case 57
6.4.2 Results for the Many-Objectives Case 59

6.5 The Mixed-Model SmartPhone Problem 61
6.5.1 Results for Multi-Objectives Case 65
6.5.2 Results for the Many-Objectives Case 66
6.5.3 Overall Results . 68

7 Conclusion 71

Appendix 73

Bibliography 87

List of Figures

2.1 Decision Space and Objective Space 9

2.2 Example of a minimization Pareto front 11

3.1 Layout of a Straight Assembly Line 20

3.2 Layout of a U-Shaped Assembly Line 20

3.3 Layout of a Parallel Assembly Lines 21

3.4 Layout of an Assembly Line with Parallel Workstation 21

3.5 Layout of a Two-Sided Assembly Line 22

3.6 Bowman’s Benchmark Precedence Graph 22

4.1 Final Result, Using RPW Heuristic 31

4.2 Final Result, Using IUFF-WET Heuristic 31

5.1 Joint Precedence Graph Using Model Mix Approach 34

5.2 Shows NSGA-II Process . 38

5.3 Shows Crowding Distance Method . 38

5.4 Shows the non-dominating sorting process 39

5.5 Selection of Solutions in NSGA-III 39

5.6 Representation of a Chromosome . 40

5.7 Shows Crossover Strategy . 41

5.8 Shows Mutation Strategy . 41

6.1 Bowman’s Precedence Graph . 44

6.2 Pareto Front for Multi-Objective Bowman Problem 45

6.3 Hypervolume Convergence for Multi-Objective Bowman Problem . . 45

6.4 Pareto Front for Many-Objective Bowman Problem 47

x List of Figures

6.5 Hypervolume Convergence for Many-Objective Bowman Problem . . 47

6.6 Buxey’s Precedence Graph . 48

6.7 Pareto Front for Multi-Objective Buxey Problem 49

6.8 Hypervolume Convergence for Multi-Objective Buxey Problem 49

6.9 Pareto Front for Many-Objective Buxey Problem 51

6.10 Hypervolume Convergence for Many-Objective Buxey Problem 51

6.11 WeeMag’s Precedence Graph . 52

6.12 Pareto Front for Multi-Objective WeeMag Problem 53

6.13 Hypervolume Convergence for Multi-Objective WeeMag Problem . . . 53

6.14 Pareto Front for Many-Objective WeeMag Problem 55

6.15 Hypervolume Convergence for Many-Objective WeeMag Problem . . 55

6.16 Camera’s Precedence Graph . 56

6.17 Information about Processing Times for all 4 Models of the Camera . 57

6.18 Pareto Front for Multi-Objective Camera Problem 58

6.19 Hypervolume Convergence for Multi-Objective Camera Problem . . . 58

6.20 Pareto Front for Many-Objective Camera Problem 59

6.21 Hypervolume Convergence for Many-Objective Camera Problem . . . 60

6.22 SmartPhone Joint Precedence Graph 64

6.23 Pareto Front for Multi-Objective SmartPhone Problem 65

6.24 Hypervolume Convergence for Multi-Objective SmartPhone Problem 65

6.25 Pareto Front for Many-Objective SmartPhone Problem 67

6.26 Hypervolume Convergence for Many-Objective SmartPhone Problem 67

A.1 Bar Graph of Bowman’s Solution for Best Found Cycle Time 73

A.2 Bar Graph of Bowman’s Solution for Best Found No. of Workstations 73

A.3 Bar Graph of Bowman’s Solution Closest to Median Values 74

A.4 Bar Graph of Buxey’s Solution for Best Found Cycle Time 74

A.5 Bar Graph of Buxey’s Solution for Best Found No. of Workstations . 75

A.6 Bar Graph of Buxey’s Solution Closest to Median Values 75

A.7 Bar Graph of Camera’s Solution for Best Found Cycle Time 76

A.8 Bar Graph of Camera’s Solution Closest to the Median Values 76

A.9 Bar Graph of SmartPhone’s Solution for Best Found Cycle Time . . . 77

List of Figures xi

A.10 Bar Graph of SmartPhone’s Solution for Best Found No. of Workstations 77

A.11 Bar Graph of SmartPhone’s Solution for Best Found Total Idle Time 78

A.12 Bar Graph of SmartPhone’s Solution for Best Found Task Distribution 78

A.13 Bar Graph of SmartPhone’s Solution Closest to the Median Values . 79

A.14 Bar Graph of WeeMag’s Solution Closest to the Median Values 79

A.15 Bar Graph of WeeMag’s Solution for Best Found Cycle Time 80

A.16 SmartPhone Precedence Graph for all Possible Options 82

A.17 SmartPhone Model1 Precedence Graph 83

A.18 SmartPhone Model2 Precedence Graph 84

A.19 SmartPhone Model3 Precedence Graph 85

List of Tables

4.1 Categorization of Tasks and Workstations 28

6.1 P-Values for Multi-Objective Bowman Problem 46

6.2 Performance Indicators for Multi-Objective Bowman Problem 46

6.3 P-Values for Many-Objective Bowman Problem 47

6.4 Performance Indicators for Many-Objective Bowman Problem 48

6.5 P-Values for Multi-Objective Buxey Problem 50

6.6 Performance Indicators for Multi-Objective Buxey Problem 50

6.7 P-Values for Many-Objective Buxey Problem 51

6.8 Performance Indicators for Many-Objective Buxey Problem 52

6.9 P-Values for Multi-Objective WeeMag Problem 54

6.10 Performance Indicators for Multi-Objective WeeMag Problem 54

6.11 P-Values for Many-Objective WeeMag Problem 55

6.12 Performance Indicators for Many-Objective WeeMag Problem 56

6.13 P-Values for Multi-Objective Camera Problem 58

6.14 Performance Indicators for Multi-Objective Camera Problem 59

6.15 P-Values for Many-Objective Camera Problem 60

6.16 Performance Indicators for Many-Objective Camera Problem 61

6.17 Categorization of Tasks and Workstations for SmartPhone Problem . 61

6.18 Information about all the Tasks in SmartPhone Problem 62

6.19 Information about all the Options in SmartPhone Problem 63

6.20 P-Values for Multi-Objective SmartPhone Problem 66

6.21 Performance Indicators for Multi-Objective SmartPhone Problem . . 66

6.22 P-Values for Many-Objective SmartPhone Problem 68

6.23 Performance Indicators for Many-Objective SmartPhone Problem . . 68

xiv List of Tables

6.24 Summarizing Results for Multi-Objective Instances 69

6.25 Summarizing Results for Many-Objective Instances 69

A.1 Shows Multi-Modal Nature of ALBPs 81

List of Acronyms

ALBP Assembly Line Balancing Problem

ALDP Assembly Line Design Problems

DM Decision Maker

DPGA Distance-Based Pareto Genetic Algorithm

DR Dominance Ratios

EA Evolutionary Algorithm

EMO Evolutionary Multi-Objective Optimization

GLABP General Assembly Line Balancing Problems

HV Hypervolume

IGD Inverted Generational Distance

JIT Just-In-Time

MCDM Multi-criteria decision-making

MMALB Mixed-Model Assembly Line Balancing

MOEA Multi-Objective Evolutionary Algorithm

MOGA Multiple Objective Genetic Algorithm

MOOP Multi-Objective Optimization Problem

MuMALB Multi-Model Assembly Line Balancing

NPGA Niched Pareto Genetic Algorithm

NSGA Non-dominated Sorting Genetic Algorithm

PAES Pareto Archived Evolution Strategy

PALBP Parallel Assembly Line Balancing Problem

SALBP Simple Assembly Line Balancing Problems

SMALB Single Model Assembly Line Balancing

SPEA Strength Pareto Evolutionary Algorithm

VEGA Vector Evaluation Genetic Algorithm

1. Introduction

“An assembly line is a manufacturing process in which parts are added to a product in a
sequential manner using optimally planned logistics to create a finished product in the
fastest possible way. It is a flow-oriented production system where the productive units
performing the operations, referred to as stations, are aligned in a serial manner.”
Grzechca [2011a]

Grzechca elaborates the concept of assembly line manufacturing as a kind of produc-
tion system that is particularly well suited to mass production. The manufacturing
system operates at a very high production rate, and it is expected that there is
room in the market to consume this throughput. The optimization and planning
of these systems for efficient usage of the available resources is known as assembly
line balancing and has several advantages, including enhanced productivity, low-cost
manufacture of large quantities of standardized products, decreased work congestion,
and less material handling.

There are various tasks that must be executed in order to successfully complete
the production of a single product. On an assembly line, these tasks are carried
out in the order specified by the workstations. Parts for the final product go from
one workstation to the next on the assembly line. Due to the predetermined and
directed flow, tasks must be allocated to successive workstations such that no part is
returned to be reprocessed. The sequence in which the tasks must be accomplished
is indicated by the precedence dependencies between the tasks. A task cannot be
executed before other tasks that are located in front of it on the graph of precedence
relationships. Assembly line balancing entails distributing tasks to workstations
along the line in such a way that all precedence constraints are met and production
proceeds in a directed flow. The time an assembly line takes to produce a single
product is referred to as cycle time. This cycle time is a time constraint for each
workstation that cannot be exceeded Grzechca [2011a].

Assembly lines are usually categorized into three types: single-model lines that
are tailored to the production of a single specific product, multi-model assembly
lines that yield two or more similar products in separate batches, and mixed-model

2 1. Introduction

assembly lines that produce two or more similar products simultaneously on a line
with very small batch sizes, or even with one batch. Real-world problems are
inherently complicated, and constraints further complicate the problems. When a
problem has several and competing goals, solving it becomes more difficult. Assembly
line balancing problems (ALBP), particularly those involving multiple/mixed-model
assembly lines, are complicated in nature and can include more than one and
conflicting performance targets. The number of deployed workstations, cycle duration,
idle times, identical tasks between models, setup cost for shifting from one model’s
production to another, and so on are all factors that impact the assembly line
balancing solutions Grzechca [2011a]. For multi/mixed-model assembly lines, the
sequencing problem coexists with the balancing problem. Because the common tasks
performed by sequential models vary throughout models, it becomes critical to find
the optimal order. If this is the case, establishing the optimal order or sequencing of
the models becomes another challenge without balancing the line for each model. The
objective of this thesis is to convert a mixed-model assembly line to a single-model
assembly line and to balance the assembly line with station restrictions. On the
other hand, the challenge of optimally sequencing the models on the assembly line is
not in the scope of this thesis. We want to address this issue as a continuation of
our work in the future.

Due to the rising competition of today’s industries and global market, businesses
want to ramp up production versatility by lowering batch sizes and diversifying their
current products. Because of this competitive nature, single-model manufacturing
is less prevalent than multi/mixed-model manufacturing. According to our limited
findings, despite mixed/multi-model assembly lines being more prevalent in practice,
the literature has far more research on single-model assembly lines. Although there
still exists a substantial amount of research regarding mixed and multi-model assembly
lines, many research gaps exist, and more work should be done in this direction. This
study makes a modest contribution to filling these gaps in the literature.

ABLPs have proven to be far more challenging in practise than in theory. It gets even
more challenging to solve these problems when, to the best of our knowledge, there
exist no benchmarks for mixed/multi-model assembly lines. Another complicating
factor is the lack of published real-world problems with all the sales data of a
company. Such data is nearly impossible to find because of confidentiality. This
makes it harder to model the problem and prove the efficacy of the proposed solution.
However, information gleaned from research publications is utilized to create testing
case scenarios that are as near to reality as possible. These case problems are
used to assess the proposed methodology. A case study (mixed-model smartphone
manufacturing problem) has been fabricated as close to a real world scenario as
possible, the proposed approach has also been tested on single-model assembly line
benchmarks to check the efficiency of the optimization algorithms.

Gutjahr and Nemhauser [1964] demonstrated that the ALBP issue is NP-hard
combinatorial optimization problem. This indicates that for problems of large
magnitude, an optimal answer is not always guaranteed. As a result, heuristic
approaches proven to be the most often used strategies for problem resolution
Waldemar [2011]. Since the time of Henry Ford and the model-T, however, the
demands of products and the preferences of manufacturing systems have changed

3

significantly. Companies need to be able to make their products unique in order
to meet the demands of a diverse range of consumers. For example, the German
car company BMW alone has a list of optional features that could make 1032

different models Meyr [2009]. This drastic change in the global market toward mass
manufacturing and customization makes ALBP even more difficult to solve and
explains the rise in popularity of meta-heuristic techniques in recent years.

In this thesis, the questions under discussion are how to translate mixed-model
assembly lines for use in a single-model framework and how to optimize the balancing
of such assembly lines with workstation restrictions in a multi-objective way, for cost
reduction and efficient use of processing times.This thesis is organized into seven
sections. Section 2 is dedicated to provide the basic background information about
the nature of the problem and explanation of the proposed methodology. Section 3
describes the concepts of Assembly Line Balancing and different approaches for
resolving ALBPs from the literature. Section4 discusses the mathematical modelling
of the problem under consideration. Section 5 details the implementation of the
proposed methodology. Since the ALBP is an NP-Hard combinatorial problem, two
meta-heuristic approaches, NSGA-II and NSGA-III, are considered along with an
option-based technique for obtaining joint precedence graphs Boysen et al. [2009].
Section6 explains the experimental setup and analyses the obtained data in a detailed
discussion. The methodology has proven to be effective for finding good solutions in
moderate-to-large sized ALBPs. The same outcome, however, cannot be guaranteed
for extremely large problems. Finally, the last section summarizes all the finding and
future recommendations for the extension of this work.

2. Background

The ALBPs that are considered in this thesis are classified as multi-objective com-
binatorial optimization problems. In this section, the background on optimization
methods, especially evolutionary multi-objective optimization, is highlighted for a
thorough understanding of the problem’s nature.

2.1 Optimization
The term “optimization” refers to the act of improving something. Real-life scenarios
are riddled with optimization difficulties, many of which we face on a daily basis.
Which route has the shortest distance to university? Which food is the best value
for money while still providing the necessary nutrients? Optimization is the process
of fine-tuning a process, function, or device’s inputs in order to get the maximum or
minimal output(s). The variables are the inputs, the objective function, cost function,
or fitness value is the process or function, and the output(s) are fitness or cost Haupt
and Haupt [2004]. This thesis addresses cost minimization. In functions where a
maximum of cost is necessary, the output is minimized by appending a minus to the
objective function. As a result, all the functions discussed here, are considered to be
minimized. Some optimization problems involve only one objective function, and are
hence use single-objective optimization. However, most real world problems need
optimization of multiple parameters, and hence these problems are referred to as
multi-objective optimization problems Amouzgar [2012].

Deb [2001] divided optimization techniques into two broad categories:

• Classical techniques

• Evolutionary strategies

Traditionally used approaches start with a single random solution, which is then
modified in each iteration using a deterministic procedure in order to eventually
obtain the optimal solution. There are two different categories for these methods:
the first are direct methods, and use only objective functions and constraints to find
the optimal solution. The second are gradient-based methods, which use derivatives

6 2. Background

of objective functions (or constraints) to determine a promising direction to steer
the search Deb [2001].

Evolutionary strategies are later discussed in detail, after important concepts for it
were introduced.

2.2 Multi-Criteria Decision Making
Multi-criteria decision-making (MCDM) problems are those that involve multiple
conflicting criteria or objectives. Rather than a well-defined single optimal solution,
such problems include several compromise alternatives, known as Pareto optimal
solutions. In MCDM literature, it is common to assume that solving multistep
optimization problems is done to aid a human decision maker (DM). The goals are
to help the DMs to efficiently find a Pareto optimal solution which is most promising
according to their preferences. In these cases the solution process generally requires
the involvement of the DMs, and the final decision is governed by their preferences
Miettinen and Hakanen [2017]. MCDM approaches are classified in different ways.
According to Miettinen and Salminen [1999], There are four classifications based on
the DM’s role in the optimization procedure:

• No Preference

If there is no DM and no preference information, non-preference approaches
can be used to obtain a reasonable compromise without any further preference
information.

• A Priori Method

In an a priori method, the DM initially provides preference information, and the
method then seeks a Pareto optimal solution that best meets the goals. This
is a simple procedure, but challenging as the DM can be overly optimistic or
pessimistic, and answers may not adhere to the expectations.

• A Posteriori Method

The a posteriori method generates a representative set of Pareto optimal solu-
tions, from which the DM can choose the most desired one. The DM gains an
overview of the problem in this manner, but it may be difficult for the DM to
analyse all alternatives thoroughly without being overwhelmed. This is especially
problematic for problems with many objectives, as only two objectives can benefit
from an impartial representation on a plane.

• Interactive Approaches

A solution set is generated, and the process is repeated in an interactive way.
The DM can define and modify preferred information between every iteration.

For this thesis, the a posteriori method has been implemented using an EMO strategy,
which refers to evolutionary multi-objective optimization. The evolutionary method
is a stochastic search and optimization algorithm that mimics natural evolution.

2.3. Multi-Objective Optimization 7

The interest in mimicking living beings has risen since the 1960s. Evolutionary
methods can also outperform the classical techniques in many respects Gen and
Cheng [1997]. EMO is an a posteriori method, meaning that the algorithm will
generate a set of Pareto optimal solutions, and the DM will decide on what is the
most favoured solution of all in the end Miettinen and Hakanen [2017]. Classical
approaches solve these problems from different perspectives, mostly due to a lack
of an efficient optimization tool for finding many optimal results. They frequently
require repeated execution of an algorithm in order to uncover many Pareto optimal
answers.

Usually, such approaches cannot actually guarantee the existence of a diverse Pareto
optimal set in the end. This is contrasted by evolutionary algorithms (EAs), which
use solution populations to identify diverse Pareto optimal sets efficiently and in a
single simulation cycle Deb [2014]. This property has made EMO approaches popular
for many applications and in research.

2.3 Multi-Objective Optimization
Multi-objective optimization deals with optimization problems where a multitude of
objectives need to be satisfied at the same time. It can therefore be considered a
subfield of multi-criteria decision-making Chang [2015].

As mentioned before, real world problems often contain multiple conflicting objectives.
So, one extreme answer will generally not fulfil both objectives, and the ideal solution
for one objective is not necessarily the perfect solution for another. Due to these
trade-offs between objectives, a set of ideal solutions representing all objectives
adequately is necessary Amouzgar [2012]. Multi-objective optimization has been used
in a wide variety of research sectors, including engineering, where designers must
choose between conflicting objectives such as vehicle performance, fuel consumption,
and emissions. In these instances, a multi-objective optimization approach reflects
the trade-offs between the objective functions well and should be used Chang [2015].
ALBP is another such problem and can benefit from multi-objective optimization.
Often, the multi-objective nature of these problems is dealt with by scalarizing
numerous objectives into a single objective, usually as a weighted sum. However, this
is not ideal and the evolutionary approach solves the multi-objective optimization
problem as-is Deb [2014].

The following is a general formulation of a multi-objective optimization problem
(MOOP):

min \max fm(x),m = 1, 2, ..M ; (2.1)

subject to gj(x) ≤ 0, j = 1, 2, ..J ; (2.2)

hk(x) = 0, k = 1, 2, ..K; (2.3)

x(L)
n ≤ xn ≤ x(U)

n , n = 1, 2, ..N. (2.4)

Where,

8 2. Background

f is the objective function to be maximized or minimized, and it’s a function of x
which denotes the vector of decision variables, M is the total number of objectives,
gj andhk represent constraints, J andK show total number of constraints for gj andhk
respectively. Whereas, x

(L)
n and x

(U)
n indicate the lower and upper bounds for each

decision variable and N is the number of these variables.

According to Deb [2014] Multi-objective optimization possesses the following charac-
teristics:

1. The optimal set’s cardinality is typically greater than one.

2. There are two distinctive optimization goals rather than one.

3. There are two distinct search spaces.

In the majority of MOOPs, the Pareto optimal solutions share some similarities
amongst the decision variables Deb and Goel [2003], but objective values differ. On
the other hand, in multi-modal optimization problems (see section 2.4), there may
be several solutions with identical objective values, but different decision variables.
According to a study, which was conducted on a variety of engineering cases Deb and
Goel [2003], The resulting trade-off solutions have revealed the following properties:

1. Certain decision variables take identical values across all Pareto optimal solutions.
The decision variables possessing this feature indicates that the solution is
optimal.

2. Other decision variables take on different values, resulting in a trade-off between
the solutions’ objective values.

Unlike in single-objective optimization, where the primary objective is just to identify
the optimal solution, there are two distinct challenges for MOOPs:

1. Convergence to the Pareto optimal solutions.

2. Maintenance of diversity in a set of Pareto optimal solutions.

In some ways, these challenges are distinct from one another. An optimization
algorithm must possess properties to respect both of these challenges adequately.

Another distinction between single- and multi-objective optimization is that the
objective functions in multi-objective optimization form a multidimensional space
next to the common decision variable space. The additional space is denoted by the
letter Z, which stands for objective space. Every point x from the decision variable
space maps to a specific point f(x) in the objective space. Hence, each solution
consisting of an array of decision variables has certain objective values. The fig. 2.1
depicts the two spaces and their mapping Deb [2014].

2.4. Multi-Modal Problems 9

Figure 2.1: Decision Variable Space and its Corresponding Objective Space Nagaiah
and Geiger [2019]

2.4 Multi-Modal Problems
A multi-modal function or problem is one that exhibits multiple “modes” or optimal
states (e.g., valleys). Further, there also exist non-convex multi-modal functions.
Rather than a single global optimal solution, this kind of problem has many global
solutions or at least multiple local peaks of equal quality. Generally, in such multi-
modal circumstances, there exist multiple different arrays of decision variables that
nonetheless map to identical points in objective space Javadi and Mostaghim [2021].
Multi-modal multi-objective optimization problems are prominent in a wide variety
of real-world problems, among which is ALBP as a non-convex multi-modal multi-
objective problem.

2.5 Multi-Objective Optimization Terminologies
The following terminologies are defined to further assist the reader in comprehending
the concept of multi-objective optimization.

Decision Space

The variable bounds impose a lower and upper limit on each decision variable,
defining a space called decision variable space Amouzgar [2012].

Objective Space

When multiple objective functions are optimized, the values which the objective
functions can assume define a space called objective space. This space has as
many dimensions as there are objectives. Each solution from decision space has a
corresponding point in the objective space Amouzgar [2012].

Linearity and Non-Linearity

A linear optimization problem is one in which both constraints and objectives are
linear, in which case it’s called a multi-objective linear problem. In comparison,
when one or more of the objectives and/or constraints are non-linear, the problem
will be called a multi-objective non-linear problem Deb [2001].

10 2. Background

Convex and Non-Convex Problems

A problem is convex if all its objective functions and feasible regions are convex
Deb [2001]. Convexity is critical in MOOPs, as solutions produced using preference-
based approaches cannot cover non-convex trade-off solutions in the Pareto front for
problems that have them. Additionally, many of the known algorithms are restricted
to convex problems. While convexity can be defined in terms of the decision space,
as well as the objective space, it is especially important in the objective space for
the mentioned reasons Amouzgar [2012].

Dominated and Non-Dominated Solutions

Due to conflicting objectives, a solution optimized for one objective does not neces-
sarily fare well in other objective(s). If the given problem is of minimization nature,
then a solution A is better than a solution B if all its objective values are equal
or better than those of B, and at least one is strictly better. In this case, B is
a dominated solution and A is the dominating solution. To further explain the
domination criterion, a general mathematical definition for both minimization and
maximization in multi-objective problems can be made:

A feasible solution x1 dominates another feasible solution x2 (x1 � x2), if and only if:

1. The solution x1 is no worse than x2 with respect to all objective values, hence
fm(x1) ≤ fm(x2) ∀m = 1, 2, ...,M

2. The solution x1 is strictly better than x2 in at least one objective value, hence
fm(x1) < fm(x2) for at least one m ∈ {1, 2, ...,M}

where, M is a number of objectives and � is the domination sign.

Therefore, solution x1 dominates solution x2, solution x1 is non-dominated by solution
x2 and solution x2 is dominated by solution x1.

Pareto Optimal Set

Pareto optimal solutions are defined as those, which are non-dominated. Each Pareto
optimal solution represents the best known answer for all objectives, and cannot
be improved without compromising another objective. The Pareto optimal or non-
dominated set is the collection of all possible solutions that are not dominated by
any other solution. If the non-dominated set is contained entirely within the feasible
search space, it is referred to as the globally Pareto optimal set Amouzgar [2012].

Pareto Optimal Front

Pareto front refers to the values of objective functions associated with each solution
of a Pareto optimal set in objective space.

2.6. Multi-Objective Optimization Techniques 11

Figure 2.2: Example of a minimization Pareto front for two objectives Amouzgar
[2012]

2.6 Multi-Objective Optimization Techniques
Although a lot of research work has been done in the area of multi-objective opti-
mization, most of that research work circumvents the difficulties and challenges by
converting multi-objective problems into single-objective problems Amouzgar [2012].
According to Deb [2001], this is in contrast to the preferable method of solving such
problems as they are, and the approaches can thus be divided,

• “Ideal multi-objective optimization, where a set of solutions in form of a trade-off
curve is obtained, and the desired solution is selected according to some higher
level information of the problem”.

• “Preference based multi-objective optimization, which by using the higher level
information of a preference vector transforms the multi-objective problem to a
single-objective optimization. The optimal solution is obtained by solving the
single-objective problem”.

The former approach has been used in this thesis, where the problem will be solved
as it is without converting it into a single-objective problem, and no preference vector
is required.

Using the ideal approach, without higher-level information, none of the Pareto optimal
solutions is favoured over others. Thus, the primary goal of the ideal approach is
converging to a set of solutions that is as close to the genuine Pareto optimal set
as possible, which is the common goal of all optimization problems. However, the
second aim specific to multi-objective problems is diversification in the derived Pareto
optimal solutions Amouzgar [2012].

Classical approaches can also be used for solving multi-objective optimization prob-
lems. Multiple objectives can be converted to a parametric single-objective function
using a parametric scalarizing strategy (including the weighted-sum approach, the
epsilon-constraint approach, and others). Several Pareto optimal solutions can be

12 2. Background

obtained by simply adjusting the parameters (weight vector or epsilon-vector) and
maximizing the scalarized function. In contrast, EMO attempts to find multiple
Pareto optimal solutions in a single simulation by identifying numerous non-dominated
solutions at once Deb [2001].

2.7 Evolutionary Algorithms
Evolutionary algorithms (EAs) are a broad class of algorithms that use a procedure
inspired by the process of natural evolution to solve problems. This process involves
first representing the solution space as a series of possible solutions called a population,
then representing the fitness of each individual in the population by a fitness function.
The next step is to select a set of individuals from the current population to be the
parents for the next generation. The final step is to generate the offspring, which are
the solutions in the next population, fon this section / chapter, the discussion will
point for which the selected parents are used as a guide.

Typically, evolutionary algorithms are employed to provide good approximations
to problems that could not be easily addressed using other techniques. This cat-
egory encompasses a large number of optimization problems. Because it may be
computationally extremely expensive to obtain an exact result, there are situations
where near-optimal solutions suffice. Evolutionary approaches can be effective in
solving NP-Hard Problems. Due to their inherent randomness, evolutionary algo-
rithms cannot promise the ideal solution to any problem, however EAs typically
find a decent solution if one exists. The key advantage of using EAs is therefore
that they are well suited to large problems, where classical methods fail or take
too long to compute. Among many examples is the field of protein folding, where
using an evolutionary algorithm has been shown to complete the folding process in a
timescale of minutes where using a classical method would have taken months. This
is also evident in the field of human-assisted machine learning, where EAs are often
used to find optimal training sets for machine learning algorithms where classical
methods would require human knowledge and a lot of time to compute. Moreover,
as there is little prior knowledge required for solving the problem, there is also a
reduced vulnerability to shape (convex or non-convex problems) and continuity of
the Pareto front. Ease of implementation, resilience, and parallelism are several
further advantages of evolutionary algorithms as described in Abraham and Jain
[2005] and Amouzgar [2012].

2.8 Multi-Objective Evolutionary Algorithms
Most of the literature indicates, that multi-objective evolutionary algorithms (MOEA)
were invented by David Schaffer in the mid-1980s with his approach named VEGA
(Vector Evaluation Genetic Algorithm), which was designed to solve optimization
problems in machine learning. Apart from VEGA, there are various MOEAs identified
in Deb [2001] and Coello et al. [2007] including; Niched Pareto Genetic Algorithm
(NPGA, NPGA2), Non-dominated Sorting Genetic Algorithm (NSGA, NSGA-II,
NSGA-III), Strength Pareto Evolutionary Algorithm (SPEA, SPEA2), Distance-
Based Pareto Genetic Algorithm (DPGA), Pareto Archived Evolution Strategy
(PAES), Multiple Objective Genetic Algorithm (MOGA) and many others. Given

2.9. Constraint Handling 13

the existence of multiple MOEAs, the topic of which approach performs the best is
frequently asked by scientists and researchers. To arrive at a conclusion, multiple test
problems have been developed and a huge amount of analysis has been conducted.
Deb’s book discusses key research for the comparison of EAs Deb [2001]. In addition
to that, Konak et al. [2006] presents a table outlining the pros and cons of the
well-known EAs.

In the following, some of the most used and debated algorithms are listed, beginning
with Non-dominated Sorting Genetic Algorithm (NSGA-II) Deb et al. [2002], and then
the Strength Pareto Evolutionary Algorithm (SPEA, SPEA2) Zitzler and Thiele [1998]
and Zitzler et al. [2001], the Pareto archived Evolutionary Strategy (PAES) Knowles
and Corne [2000], and the Pareto Enveloped Based Selection. Extensive comparative
research and numerical simulations on a variety of test problems demonstrate that
NSGA-II and SPEA2 exhibit superior overall behaviour to other algorithms Amouzgar
[2012].

NSGA-II and NSGA-III have been selected in this thesis to solve the multi-objective
Assembly Line Balancing Problem and are explained in detail in Section 5.

2.9 Constraint Handling
One of the most important and difficult aspects of solving a multi-objective optimiza-
tion problem is the handling of constraints. Since most of the real-world problems
involve constraints, they must be handled carefully. Constraints can be soft or hard,
and in the form of equality or inequality. A hard constraint is fixed and must not be
violated. On the other hand, a soft constraint can be ignored in order to accept a
solution Amouzgar [2012] Coello et al. [2007] and Knowles and Corne [2000]. In a
constrained problem, the decision space is split into two distinct regions: feasible
and infeasible. Whereby the feasible region is containing all solutions which meet all
constraints, while the infeasible space contains all other solutions Amouzgar [2012].

Deb [2001] summarizes the five categories into which the majority of existing con-
straint handling methods fall:

• Preserving feasibility of solutions.

• Penalty functions.

• Biasing feasible over infeasible solutions.

• Methods based on decoders.

• Hybrid methods.

The penalty function is the most common and generally practised methodology for
constraint handling. The penalty function approach transforms a constraint problem
into an unconstrained one. In the thesis, the penalty function has been chosen to
handle the constraints involved in the ALBP. In this case, the penalty of infeasible
solutions is proportional to the degree to which they break the constraint. The
penalty increases proportionately to the number of violated constraints.

The constraints involved for assembly line balancing problems have been mathemati-
cally explained and presented in detail in the problem formulation section.

3. Literature Review

In this section, the discussion will point to the thorough introduction of the assembly
line balancing problem, along with the review of its current state in the literature.

3.1 Assembly Line
Henry Ford pioneered the factory assembly line in the early 1900s. It was created to
be a highly productive and efficient method of manufacturing a certain product. The
simplest assembly line consists of a series of workstations connected by a material
handling equipment in a linear pattern. The assembly line’s fundamental movement
starts with a part being fed into the first workstation at a specified feed rate. Any
spot on the assembly line at which an action is performed on a part is designated a
workstation. These tasks or actions can be accomplished through the use of machines,
human operators or robots. Once a part reaches a workstation, it is assigned a task
and then transported to the next workstation Waldemar [2011].

According to Sury [1971], the time period required to perform a job or a task at each
workstation is referred to as the process time of that task. Fonseca et al. [2005] and
Baybars [1986] define the cycle time of an assembly line as a predetermined targeted
output rate of production. This production rate is determined in such a way that the
required supply of final product is manufactured within a specified time period. To
keep the assembly line running at a constant rate, the total processing times at each
workstation must not exceed the cycle time limitation of an assembly line Fonseca
et al. [2005]. Erel and Sarin [1998] described idle time as the difference between the
processing times on a given workstation and the cycle time. These terminologies are
very crucial and are discussed in detail in the later section problem formulation.

3.2 Assembly Line Balancing Problem
An assembly line is composed of workstations that are configured along a conveyor
belt or other mechanical material handling machinery. The parts to be assembled
are launched down the line sequentially and are transported from workstation to

16 3. Literature Review

workstation. Certain processes are repeated at each station in order to maintain the
cycle time. According to Kao [1976], one of the primary concerns when developing
an assembly line is the distribution of the tasks to be done, which is known as the
assembly line balancing problem (ALBP). While this distribution is subjective to
some extent, it must adhere to the underlying constraints imposed by the production
sequence: To manufacture any product there are certain task sequences which should
be followed. Line balancing is used in assembly processes and can also be used in
production or manufacturing. A balanced line aims to reduce resource count while
increasing resource use. Halgeson and Birnie [1961] were the first proposers of the
ALBP, and Salveson [1955] published the ALBP in its mathematical formulation for
the first time. However, According to Erel and Sarin [1998], throughout the first
forty years of the assembly line’s existence, lines were balanced solely via trial and
error. Numerous approaches for solving the various variants of the ALBP have been
proposed since then. Salveson [1955] presented the first mathematical solution to
solve the ALBP as a linear program Waldemar [2011].

According to Baybars [1986], an assembly line is to be called perfectly balanced if
the workload on each workstation is exactly equal. However, in practice, perfectly
balancing a line is very difficult. The assembly line is then said to be balanced if all
the workstations have total idle time as low as possible. Scholl and Becker [2006]
defines ALBP in simple words as:

“The decision problem of optimally partitioning (balancing) the assembly work
among the stations with respect to some objective is known as the assembly line

balancing problem(ALBP)”

Generally, the assembly line designer’s objective is to create a line that is more
efficient, has less delay, is smoother to operate, has an optimal processing time, is
cost-effective, has a higher overall work efficiency and produces just-in-time (JIT).
Just in time production is the most often used philosophy in ALBP. It is critical that
items are made precisely in response to market demand, which means that it is not
preferable to produce goods ahead or behind the specified deadline/schedule, but
precisely on time. This is crucial because if the manufacturer produces items after
the deadline, production is delayed. If the manufacturer produces items ahead of
schedule, it can result in storage problem, which is rather expensive and undesirable.

3.3 Classification of Assembly Line Balancing
Problems

According to Uddin and Lastra [2011], ALBPs are classified mainly on the basis
of their objective functions and structure. Due to the heterogeneity of objectives,
many variants of ALBPs are proposed. The following is the classification of ALBP
according to the objective functions:

Type 1

Given the cycle time, if the objective is to reduce the number of workstations, this
kind of problem is known as type 1.

3.3. Classification of Assembly Line Balancing Problems 17

Type 2

When the number of workstation is given and the problem is concerned with reducing
the cycle time, this kind of problem is known as type 2. Type 1 and 2 are the most
popular ALBP variants in the literature.

Type 3, 4 and 5

These correlate to the optimization of workload smoothness, the maximizing of work
relatedness and multiple objectives, respectively.

Type E

This type of problem is commonly acknowledged as the most general variant of ALBP.
This variant is related to increasing line efficiency by reducing both cycle time and
the number of stations simultaneously.

Type F

It is a feasibility problem in which the objective is to determine whether an assembly
line balance is achievable given a certain configuration of workstations and cycle
time.

3.3.1 Classification According to Scholl and Becker

According to the structure of an assembly line, Scholl and Scholl [1999] and Scholl
and Becker [2006] have defined three main categories:

Single Model Assembly Line Balancing (SMALB)

The single assembly line balancing problem deals with the challenges of single model
manufacturing (where only a single product is manufactured).

Multi-Model Assembly Line Balancing (MuMALB)

Multi-model assembly line balancing problems concern setups where more than one
item or product is manufactured on the assembly line in different batches.

Mixed-Model Assembly Line Balancing (MMALB)

Mixed-model assembly line balancing problems concern setups where various versions
or models of a generic product are manufactured on the assembly line in an intermixed
situation, and preferably in a single batch.

3.3.2 Classification According to Baybars

Baybars [1986] classified ALBP into two broad categories, namely simple assembly
line balancing problems (SALBP) and general assembly line balancing problems
(GLABP).

18 3. Literature Review

SALBP

The simple assembly line balancing problem is the simplest type of balancing problem,
in which the main objective is to effectively reduce the cycle time for a set number
of workstations or vise-versa. In a very recent survey on ALBP, Boysen et al. [2021]
explains SALBP as:

“To explain the importance of the SALBP to an operations’ researcher who has not yet
heard of this optimization problem, it can be SALBP is the pendant for the production
domain what the traveling salesman problem is for the transportation area”.

Most variants of assembly line balancing problems in the existing literature are based
on a number of limiting assumptions. These assumptions are given by Baybars [1986]
as follows:

1. The manufacturing system is considered to be tailored for a single, unique
product.

2. Every task needs to be processed.

3. Every task has a fixed processing time.

4. Processing of the tasks is subjected to the precedence constraints and cannot be
done in an arbitrary fashion.

5. There are no assignment restrictions for tasks apart from precedence restrictions.

6. Each of the workstations is equally equipped with respect to machines or workers,
meaning, every worker or machine can process all sorts of task.

7. A task or a job can only be assigned to one and only workstation.

8. Any type of task can be processed or assigned to any workstation, meaning there
are no layout, zoning or positional restrictions.

9. An assembly line is considered to be serial, when there are no parallel workstations
or feeder sub-assembly lines.

10. The pacing of an assembly line is set according to the market demand with a
predefined cycle time, meaning for a fixed amount of time number of workstations
needs to be reduced, which is SALBP of type-1. On the other hand, if a number
of workstations is given, and the optimization is trying to find the minimum
cycle time, the problem is called SALBP and is of type-2.

Several versions of SALBP have been introduced based on the objective in considera-
tion. A SALBP can be of type SALBP-1, SALBP-2, SALBP-E or SALBP-F.

• SALBP-1 indicates the objective is to minimize the number of workstations
given a fixed cycle time.

• SALBP-2 indicates the objective is to minimize cycle time for a given number of
workstations.

• SALBP-E deals with the objective of increasing line efficiency by minimizing
both cycle time and number of workstations.

3.4. Assembly Line Layouts 19

• SALBP-F is a feasibility problem and checks the feasibility of an assembly line
for a given number of workstations and cycle time.

Even in the simplest form, ALBP is an NP-hard combinatorial problem. Though
real-world problems are not as simple as SALBP, SALBP is the most studied problem
in the literature and provides a solid base to understand this vast problem.

GALBP

Alongside SALBP, which simplifies work distribution to its most fundamental level, a
research area called general assembly line balancing problem (GALBP) has emerged.
The GALBP includes real-world complexities that are excluded in SALBP, therefore
focusing on assembly line problems closer to real world scenarios. These complexi-
ties include, mixed-model assembly line balancing, parallel workstations, U-shaped
assembly line, two-sided assembly lines, stochastic nature of task processing times
etc.

Baybars [1986] has introduced the differentiation between SALBP and GALBP,
where GALBP has been defined in a number of different ways by relaxing one or
more of the presumptions from 1 to 9 (given above), except for assumption number
5. There is no explicit concern in GALBP for the variable cost of operating the
workstation and fixed cost for a workstation, so, assumption number 5 is true for
GALBP and also for SALBP. In the instances where the assumption number 5 is not
true, those problems will be considered as assembly line design problems (ALDP).
The main distinction between GALBP and ALDP is that, ALDP includes technology
or labor Baybars [1986]. Methodologies and models related to ALDP are out of the
scope of this thesis and will not be discussed here.

3.4 Assembly Line Layouts
According to Grzechca and Foulds [2015], in practice, there can be different layouts
for an assembly line, including parallel lines, serial lines, two-sided lines, u-lines, etc.
Overall, the assembly line’s layout also contributes in dictating the type of ALBP.
The basic scenario is simply task assignment to workstations on a serial or straight,
single-model assembly line. Additionally, multi/mixed model lines necessitate model
scheduling and batch sizing, U-shaped assembly lines demand assigning multiple jobs
to employees or workstations, and parallel assembly lines entail deciding how many
assembly lines to generate. In this study, the most popular straight assembly line
layout has been considered. However, for the sake of completeness, several different
popular layouts are discussed in the following.

Straight Assembly Line

The serial or straight assembly line was the very first assembly line layout described,
for the layout, see fig. 3.1. A typical assembly line sets workstations and the
tasks associated with them in a sequential fashion along a straight line. In recent
times, many products are constructed not solely of basic components, but often of
complicated pieces (assembled earlier). These complicated pieces can then be easily

20 3. Literature Review

assembled with a limited number of steps. As a result, serial assembly line layout is
still widely used in final product assembly.

Figure 3.1: Layout of a Straight Assembly Line

U-shaped Assembly Line

The U-line layout was initially introduced in 1994. Workstations are organized in a
U-line pattern around a U-shaped assembly line, see fig. 3.2. Operators or workers
work on a task inside this U-line. According to Nakade and Nishiwaki [2008], U-
shaped assembly lines enhance worker’s communication skills and visibility, minimize
worker requirements and increase performance, among other benefits. The layout
gives operators the ability to complete many tasks located at various workstations
along the assembly line efficiently, and thus the U-shaped assembly line has become
a viable choice for assembly production systems. Additionally, since the U-shaped
layout provides for more flexibility in assigning tasks to workstations, the number of
workstations required for the U-shaped line configuration is never higher than the
number of workstations required for the standard straight assembly line layout.

Figure 3.2: Layout of a U-Shaped Assembly Line

In the conventional assembly line balancing problem, the validity of a set of assignable
tasks depends on the tasks whose predecessors already have been delegated to
workstations. However, in the U-line balancing problem, the set of assignable tasks
is decided by all tasks whose successors and predecessors have been already assigned
Miltenburg [1998] and Miltenburg [2001]. One of the distinctive properties of U-
shaped assembly lines in comparison with straight assembly lines is that the U-shaped
assembly line has a single entering and exiting point Avikal et al. [2013].

Parallel Assembly Lines

Simultaneously, with the emergence of the U-shaped layout, the topic of balancing
parallel assembly lines (fig. 3.3) was posed. The parallel assembly line balancing

3.4. Assembly Line Layouts 21

problem (PALBP) is composed of two related sub-problems: work assignment to
parallel assembly lines and line balancing. To identify the range of assembly lines
that could be operated with the least amount of overall workforce, Gökçen et al.
[2006] and Ismail et al. [2011] have investigated different assembly line layouts for
products with single and multiple models.

Figure 3.3: Layout of a Parallel Assembly Lines

Numerous manufacturing firms employ one or even more assembly lines. When market
demand is sufficiently great, it is not unusual for the entire manufacturing line to
be duplicated. This has the benefit of allowing for the achievement of production
rates within a certain time period. Parallel assembly lines also provide an advantage
during workstation breakdowns. If a workstation’s equipment fails, other lines might
continue to operate.

Parallel Workstations

Parallel stations are used to alleviate bottlenecks on serial lines, see fig. 3.4. Parallel
stations execute the same tasks, hence increasing throughput Bukchin and Rubinovitz
[2003].

Figure 3.4: Layout of an Assembly Line with Parallel Workstation

Two-sided Assembly Line

Two-sided assembly lines are mostly utilized for heavier parts because operating on
both sides of a heavy part is more convenient than rotating it. Rather than using a

22 3. Literature Review

single workstation, pairs of immediately opposite workstations, such as 1 and 2 in
fig. 3.5 are used. This technique greatly increases the line’s flexibility, as the heavy
part can be accessed from bothside. According to Lee et al. [2001], comparing with
serial assembly lines, two-sided assembly lines have the potential to reduce the size
of the assembly line and obviate the need for additional labour caused by handling
the work pieces.

Figure 3.5: Layout of a Two-Sided Assembly Line

3.5 Precedence Graph
As described in Scholl and Becker [2006], assembly line manufacturing requires
division of the total workload into a set of smaller, elementary operations, which are
called tasks V = 1, ..., n. A task j requires a task time tj to complete a job and a
certain kind of machine and/or skills of workers. Precedence constraints between
tasks must be adhered to due to technological and organizational constraints. These
elements are captured and illustrated by a precedence graph. This type of graph
consists of a node for each task, node weights that indicate task processing times,
and arcs represents precedence constraints. The fig. 3.6, shows a precedence graph
with total number of tasks, n = 10. The precedence constraints for, e.g., task 5
dictate that its processing requires task 3 (direct predecessor) and task 1 & 2 (indirect
predecessor) to be completed.

Figure 3.6: Bowman’s Benchmark Precedence Graph

3.6. Joint Precedence Graph 23

3.6 Joint Precedence Graph

A joint precedence graph is the combination of all the precedence graphs for every
existing model in the production line. How to combine these precedence graphs is
heavily influenced by customer demand Boysen et al. [2009]. Through the use of
a joint precedence graph, the mixed-model ALBP is regularly transformed into a
single-model problem to enable algorithmic solutions and reflect the usual need for
common tasks to be assigned to the same workstation for several models.

The former approach for balancing mixed-model assembly lines relies on detailed
forecasts of each model’s demand and is known as the model mix method. This
method is based on the estimated model mix, and from this a joint precedence graph
is constructed which represents a single, average, virtual model. In this way, the
mixed-model balancing problem is transformed into a single-model balancing problem
and any single-model balancing method can be used on it Boysen et al. [2009].

However, individual model forecasting is frequently hampered by today’s ever-
increasing product variety. With mass customization, the variety of products increases
along with the uniqueness of each model. Additionally, it becomes more difficult to
predict which model will be released next. Therefore, only forecasts of the estimated
occurrences for each product feature or option (e.g., the percentage of cars equipped
with a navigation system) are possible. Boysen et al. [2009] demonstrated how a
joint precedence graph can be generated in a way that accounts for this difference
in the available information. They claim to present the first tractable approach to
balance mixed-model assembly lines with such high product variance. The proposed
approach is an option based joint precedence graph or option mix approach. The
option mix joint precedence graph, unlike the model mix joint precedence graph,
which depends on the forecast for each model, depends on the forecast for each
option. Thus, reliable estimations can be deduced only for the frequency of option
occurrences, regardless of which specific model they would appear on (option mix).

3.7 State-of-the-Art Methods

The following are well known and the most repeated approaches in the literature to
solve ALBP.

3.7.1 Exact

Much of operations research has been devoted to coming up with the best ways to solve
SALBP-1 specifically. This resulted in approximately two dozen techniques, which
can be classified as branch and bound (B&B) procedures or dynamic programming
(DP) approaches. These approaches include lower bounds, bin packing bounds, one-
machine scheduling bounds, and destructive improvement bounds. While there are
numerous exact solution procedures for SALBP-1, only a handful have been devised
for SALBP-2. The majority of the research has been dedicated to examining search
strategies focused on repeatedly solving SALBP-1. For SALBP-2, exact approaches
include lower bound search and binary search. Scholl and Becker [2006]

24 3. Literature Review

3.7.2 Heuristic Approaches

Over the last few decades, a vast number of heuristic approaches to various variations
of SALBP were proposed. Constructive procedures for producing one or more
feasible solutions were created until the mid-1990s. Most of the proposed constructive
procedures for SALBP-1 are based on priority principles, and others are restricted
enumerative techniques. Constructive procedures include ranked positional weight
technique, immediate-update-first, general-first-fit method. On the other hand,
enumerative techniques include heuristic of Hoffman and truncated enumeration.
A detailed comparison between state-of-the-art exact and heuristics for ALBP has
given by Scholl and Becker [2006]

3.7.3 Meta-Heuristics Approaches

Since the tremendous shift in the global market and the assembly processes (especially
in the automobile industry), scientists have focused their efforts recently on improv-
ing procedures using meta-strategies. Some famous and most used meta-heuristic
approaches include ant-colony optimization, simulated annealing, tabu search and
genetic algorithms. Since ALBP is an NP-hard problem, different meta-heurstics
have been used to solve this problem. However, there is no apparent evidence to know
which kind of algorithms are better than the others. A study, proposed by Nourmo-
hammadi et al. [2019], discusses the selection procedure for meta-heuristic methods
by conducting landscape (search space) analysis of SALBP and also, statistically
validates the efficiency of the population based algorithms.

Mass customization has made the ALBP a lot more difficult to solve. It becomes
highly inconvenient and impractical to deploy exact methods on problems having
more than 60 tasks, because of high complexity and the computation is immensely
expensive. However, heuristics have the drawback to get stuck in the local optima,
which is not ideal for many problems.

In the last two decades, especially, last 12 years, the scientific work has noticeably
shifted towards Meta-heuristics, which have shown promising results to overcome the
above-mentioned challenges. However, more research and experimentation is required
in the direction of general assembly line balancing problems using meta-heuristics.

4. Problem Formulation

As previously stated, there are several variants of ALBP. However, in this chapter, the
discussion will point to the variant of mixed-model assembly line balancing problem
(MMALBP) which is under consideration in the thesis, as well as its straightforward,
yet descriptive mathematical modelling. Since a joint precedence graph approach has
been implemented, the mathematical formulation is that of a single model assembly
line balancing problem (SMALB) of type 5 with a station-restriction constraint.

4.1 Important Terminologies in ALBP
To facilitate comprehension, it is essential that the reader understands the funda-
mental ALBP terminologies.

• Task: An assembly line breaks the manufacturing or assembling process of a
product down into several steps. The term “task” refers to each individual step
on the assembly line.

• Workstation: According to Grzechca and Foulds [2015], a workstation is any
location or point on an assembly line where a task is being executed.

• Processing Time: Grzechca and Foulds define processing time as the time which
a task requires to be performed. In other words, the amount of time that a
workstation needs to execute a task.

• Cycle Time: From Grzechca [2011b]: “Cycle time is a period when tasks can
be assigned to the workstation.” Therefore, cycle time is the interval between
finished products leaving the assembly line ready for dispatching.

• Takt Time vs Cycle Time: In assembly line balancing, takt time is critical. Takt
time can sometimes be misinterpreted as cycle time, even though they are not
synonymous. Takt time is determined by market demand, whereas cycle time is
determined by the production process. In other words, takt time is what the
manufacturing or assembly line has to do in order to meet the market demand.

26 4. Problem Formulation

Whereas, cycle time is what the manufacturing or assembly line is able to do
depending on the resources available and their usage.

Takt T ime =
availale time for production

no. of products required
(4.1)

Cyle T ime =
net production time

no. of products produced
(4.2)

Ideally, takt time should be equal to cycle time according to the philosophy of just
in time production. Why is it not considered to be efficient if the manufacturing
process produces products in less than the takt time? To answer this question,
consider the following three scenarios:

1. cycle time > takt time, will result in a delay of production compared to market
demand, which means loss of sales.

2. cycle time < takt time, will result in overproduction and necessitates storage of
goods, which can become very expensive.

3. cycle time = takt time, will be JIT. This is a win-win situation because in this
case, neither delay will occur nor storage is required.

4.2 Presumptions
ALBP is a very wide topic. While the primary objective stays the same (to increase
assembly line efficiency), ALBP has shown itself in a variety of ways in the literature.
It is vital to specify which assumptions are taken into account in the thesis.

1. Straight assembly line layout with no feeder lines or parallel stations.

2. The manufacturing system is considered to be tailored for mass-production of
mixed-model products.

3. Every task needs to be processed.

4. Every task has a fixed processing time.

5. Processing of the tasks is subjected to the precedence constraints and cannot be
done arbitrarily.

6. There are no assignment restrictions of tasks, except for the precedence restric-
tions and station restrictions. Not all stations are able to perform all the existing
tasks.

7. A task cannot be split among two or more workstations.

8. Both, cycle time and number of workstations are variable and optimized for
to thoroughly explore the best possible solutions for a given scenario without
predefined preferences.

4.3. The Decision Variables 27

The above-given assumptions describe the ALBP variant under consideration. In
summary, the considered assembly line layout is straight, and the structure dictates
the mixed-model production system. By relaxing or augmenting these assumptions,
an entirely new variant of the ALBP can be defined. It is very important to
understand the given problem and to formulate it correctly before starting with the
optimization steps.

4.3 The Decision Variables
The decision variables dictate the task allocation to workstations, including their
distribution, for a given cycle time. In the simplest case, a binary modelling can be
employed:

Xij represents the allocation of tasks i to the workstation j

Xij = 1, if the task i is allocated to the workstation j, otherwise Xij = 0

Where, i = 1...m and m = max number of tasks

for example, a problem with 8 tasks and 6 workstations will result in 48 decision
variables using the binary based mathematical modelling above. This way of mathe-
matical modelling has been chosen to describe the problem because it’s simple and
easy to follow. However, it should be noted that a task sequence representation was
used for the actual implementation of decision variables (described later), rather
than the binary matrix itself. Given a cycle time, a binary matrix like presented can
then be constructed.

4.4 Constraints
What makes ALBP even more challenging is the number of constraints that it has to
deal with. The two major constraints this thesis deals with are precedence constraints
and station restrictions. Before discussing these major constraints in depth, the
general constraints are presented as the following:

• Each task should go to only one station, meaning a single task cannot be allocated
to two different workstations,

n∑
j=1

Xij = 1 ∀ i (4.3)

• The sum of all the processing times for all the tasks allocated to a workstation,
should not exceed the cycle time,

m∑
i=1

ti ·Xij ≤ C ∀ j (4.4)

Where, ti is the processing time for task i, and C is cycle time

28 4. Problem Formulation

4.5 Precedence Constraints
The layout of a straight assembly line dictates the movement of the product in forward
direction only, this means that no sub-part of the final product on the assembly
line can go to a workstation with lower number than the workstation at which it is
currently. Hence, the sub-part of the product cannot go in reverse direction on a
straight assembly line and the following operations can only be performed by the
workstations having higher number than its latest workstation.

As an example, if there is a precedence relation between task 1 and task 2, the
workstation to which task 2 is assigned should be the same as the one for task 1, or
a workstation further down the line. Following are the mathematical expressions for
the precedence constraints between task 1 and task 2 given that the eq. (4.3) holds
true, and six workstations are assumed:

X1,1 ≤ X2,1 + X2,2 + X2,3 + X2,4 + X2,5 + X2,6 (4.5)

X1,2 ≤ X2,2 + X2,3 + X2,4 + X2,5 + X2,6 (4.6)

X1,3 ≤ X2,3 + X2,4 + X2,5 + X2,6 (4.7)

X1,4 ≤ X2,4 + X2,5 + X2,6 (4.8)

X1,5 ≤ X2,5 + X2,6 (4.9)

X1,6 ≤ X2,6 (4.10)

Xij is the task allocation variable, where i is the task number and j is the number of
the workstation. All of the above equations must hold true for a given task allocation
on six workstations with the given precedence relation between task 1 and task 2.
Otherwise there is a constraint violation.

4.6 Station Restrictions
Station restrictions are a constraint that is often excluded in the literature. For
the sake of simplicity, it is often assumed that there exist no station restrictions
while allocating the tasks. Therefore, it is assumed that each workstation is capable
of carrying out all sorts of operations. Unfortunately, this is not the case with
most real-world problems. Not every workstation, whether it is a machine, robot
or a human being, is capable of performing all kinds of operations. Hence, station
restrictions have been included in this study, making the approach more practical.

Tasks and workstations are divided into groups based on their compatibility, e.g. if
there are 6 workstations and 8 tasks divided into two groups, A and B, then the task
that has been categorized as group A cannot be performed by a workstation that
has been categorized as group B, as shown by the table below:

Table 4.1: Grouping Tasks and workstations according to their compatibility

Group Workstation Number Task Number

A 1,2,3 1,3,4,5

B 4,5,6 2,6,7,8

4.7. Objective Functions 29

Considering the example shown by Table 4.1, task 1 and task 2 belong to different
groups, hence task 1 cannot be allocated to workstations 4, 5 and 6, see eq. (4.11)
and task 2 cannot be allocated to workstations 1, 2 and 3, see eq. (4.12).

X1,4 + X1,5 + X1,6 = 0 (4.11)

X2,1 + X2,2 + X2,3 = 0 (4.12)

X3,4 + X3,5 + X3,6 = 0 (4.13)

X4,4 + X4,5 + X4,6 = 0 (4.14)

X5,4 + X5,5 + X5,6 = 0 (4.15)

X6,1 + X6,2 + X6,3 = 0 (4.16)

X7,1 + X7,2 + X7,3 = 0 (4.17)

X8,1 + X8,2 + X8,3 = 0 (4.18)

The above equations describe all the station restrictions for the selected example. To
tackle these constraints, a simple but effective heuristic has been introduced in this
thesis, which is discussed in details under Section 5.

4.7 Objective Functions

The goal of assembly line balancing is mainly to improve the efficiency of the
production process. Although there are many variants of ALBP, the main goal
remains the same. An increase of productivity and the maximum utilization of the
deployed resources can be achieved by varying the number of workstations (and/or
adjusting the cycle time limit), while the smoothness of the line can be increased
by making sure the tasks are well distributed amongst the workstations. There can
be more objectives than mentioned here, but these are the most fundamental and
important ones. In this thesis, four objectives are chosen, including minimization
of cycle time (eq. (4.20)), number of workstations (eq. (4.19)), smoothness index
(eq. (4.22)) and total Idle time (eq. (4.24)).

30 4. Problem Formulation

Cycle Time and Number of Workstations: One of the main objectives of
ALBPs is to reduce the required resources, which are mainly cost and time. The
second main objective in ALBPs is to make sure that the deployed resources are
being utilized to 100% of their capacity, ideally. However, in reality, as close to 100%
utilization as possible. These objectives can be achieved by means of minimization
of the number of stations or by lowering the cycle time.

minN =
n∑
j=1

Sj (4.19)

where N is the total number of workstations, Sj = 1 if workstation j was allocated
(had any tasks given), and n is the maximum number of workstations.

minC (4.20)

where C is the cycle time

Another very important and often used performance indicator is the line efficiency
(eq. (4.21)). It computes the ratio of minimum possible production time for one
product (the sum of task processing times) to total available processing time in the
assembly line. The result is a percentage of resource utilization, or the efficiency of
the assembly line, respectively. Hence, line efficiency gives important information
about the utilization of the whole assembly line. However, since it is a function of
cycle time and total number of workstations, it has not been included as an individual
objective function.

maxLine Efficiency =

∑m
i=1 ti

N · C
· 100 (4.21)

where ti is the processing time of task i

Smoothness Index: Smoothness index indicates how well the tasks are dis-
tributed among the workstations. It simultaneously penalizes the total idle time of
the system, as well as variances in the idle times among the workstations. It can be
mathematically represented as follows:

minSmoothness Index =

√√√√ n∑
j=1

(C −
m∑
i=1

ti ·Xij)2 (4.22)

When there are two solutions with an equal number of workstations, one might be
“better balanced” than the other. For example, consider the fig. 4.1 and fig. 4.2 of two
different assembly lines taken from Waldemar [2011], both assembly lines have the
same cycle time, total idle time and number of workstations. However, the assembly
line fig. 4.2 is considered to be superior or better balanced compared to assembly
line fig. 4.1 in terms of task distribution. In other words, the total idle time of the

4.7. Objective Functions 31

assembly line fig. 4.2 is more evenly distributed over all the workstations as compared
to the assembly line fig. 4.1.

Figure 4.1: Final Solution of Assembly Line Balancing Problem, Using RPW Heuristic

Figure 4.2: Final Solution of Assembly Line Balancing Problem, Using IUFF-WET
Heuristic

Importantly, in most of the early literature there is a prominent assumption that
minimizing smoothness index can be used interchangeably with minimizing number
of workstations. That is because they correlate significantly. However, Fathi et al.
[2018] proves that minimizing the smoothness index is not necessarily equivalent

32 4. Problem Formulation

to minimizing the number of workstations and hence these two objectives are not
substitutes for each other and must be considered as two different objectives. The
importance of the smoothness index has been discussed much in the literature (Nour-
mohammadi and Zandieh [2011], Kellegöz [2016], Mozdgir et al. [2013]), although
the nuances of this discussion are outside the scope of this thesis.

Variance in Task Distribution: Although the smoothness index is an impor-
tant, often used objective function, it is a relative term. Meaning that problems with
different sizes cannot be compared fairly based on their smoothness indexes. This
is because the smoothness index correlates strongly with the total idle time, which
naturally tends to increase for scenarios with more workstations. To counteract these
issues, a new objective function (Variance in Task Distribution) has been formulated
in this thesis, which is not a relative term and purely indicates how evenly the tasks
are distributed among the workstation without correlating to the total idle time.
The smaller the value of variance in task distribution, the better the distribution is.
This allows adding the total idle time as the fourth objective. The mathematical
representation of this objective function is as follows:

minV ar Task Distribution = V ar{
∑m

i=1 ti ·Xij

C
} ∀ j (4.23)

Total Idle Time: The last objective function is the total idle time, which shows
the collective idle time of all the workstations. Minimizing idle time maximizes the
utilization of the deployed resources, and it can be represented mathematically as:

minTotal Idle T ime =
n∑
j=1

(C −
∑

ti ·Xij) (4.24)

5. Proposed Methodology

In this section, the discussion centres on the proposed methodology to face the
challenges of multi-objective mixed-model assembly line balancing problems. The
section is divided into three main parts: First, details of converting mixed-model
assembly lines into single-model assembly lines, which addresses the implementation
of the joint precedence graph using the option mix method. Second, the optimization
process to balance the assembly line in an optimal way is discussed, along with the
evolutionary algorithms that were implemented. Third, the station restrictions and
a simple, yet effective heuristic to tackle the challenge is discussed.

5.1 Option-based Joint Precedence Graph
To get an algorithmic solution and to deal with the typical requirement of assigning
tasks shared by many models to the very same station, the mixed-model ALBP
is often converted into a single-model ALBP by using a joint precedence graph
Thomopoulos [1970]. As a first step, the precedence graphs of different models have
been combined into one joint precedence graph using the option-based technique
proposed by Boysen et al. [2009].

According to Breginski et al. [2013], the most important and crucial condition for
making a joint graph is, that there should not be any conflicts of precedence between
the models. Although Boysen et al. [2009] explains how to remedy the problem
of conflicting precedence relations between models, it leads to cycles in the joint
precedence graph. For this thesis, it has been considered that there are no precedence
conflicts amongst the models.

For the sake of completeness and better comprehension, before discussing the im-
plementation of the option-based technique, the well-known model based technique
is discussed briefly: The model-mix method is based on the usage of each model’s
probability (these probabilities are driven from the sales data of the manufacturing
firm, which shows how many times in the past a particular model has been sold or
manufactured) instead of considering the individual probabilities for each available

34 5. Proposed Methodology

option. Thus, the mixed-model method results in an average model for all the existing
models, see the fig. 5.1 below.

Figure 5.1: The joint precedence graph is the average of the three models with respect
to their Probabilities, Since all the Tasks have the same processing time, except task
1, only the joint processing time for task 1 has been calculated using eq. (5.2)

However, with the increase in customization, where there can be thousands of options
to choose from, resulting in millions of models, the mixed-model method fails, because
it is not possible to predict any specific model’s demand reliably. Hence, the option-
mix method has been introduced, which predicts the selected options instead of
predicting the whole model. The mathematical definition of a joint precedence graph
G = (V,E, t̄) based on the model-based approach is given by Macaskill [1972] and
Van Zante-de Fokkert and de Kok [1997] as:

V =
⋃
m∈M

Vm (5.1)

t̄i =
∑
m∈M

Pm · tim ∀ i ∈ V (5.2)

E =
⋃
m∈M

Em /{RedundantArcs} (5.3)

Using the option mix approach, the joint precedence graph will be constructed
according to the general procedure and structure of the traditional approach, as
shown above. In order to generate the joint node set V in eq. (5.1), tasks that are
common to different models, despite requiring different processing times, are given
a consistent node number across all models. Thereby, the assignment of the same

5.1. Option-based Joint Precedence Graph 35

task to different workstations is prevented. Processing time, referred to as node
weight, is zero for tasks that are not required by a model. In this way, the average
processing time t[i] can simply be obtained from the model-specific task time t[im],
but weighted according to the demand probability Pm of the model from eq. (5.2).
The joint precedence constraints are determined by joining model-specific arc sets in
eq. (5.3). This process can lead to arc-redundancy. Since the arc is redundant, it
can easily be removed without any information loss Boysen et al. [2009]. However,
to make things a little simpler, for this study, only problems that will not result in
redundancy of the arcs have been selected.

An acyclic graph is created by transferring all tasks and their respective precedence
constraints to the option mix joint precedence graph. In contrast to the model mix
approach, the main difference is in how the joint task times are calculated from the
estimated probabilities that products will contain specific options, rather than from
the estimation of which exact models are going to be produced how many times. For
each task i belonging to V , the joint processing times t[i] are computed individually.
The following four steps are given by Boysen et al. [2009] based on the set of options
O to obtain the values:

1: List the options in a set Oi which requires the task i to be carried out, set Oi

will be the subset of the set O.

2: Determine all combinations in the form of set V Oi ⊂ P (Oi), which can appear
in the same model feasibly, where P (Oi) is the power set of Oi.

“Each feasible combination defines a virtual option. In order to get a set of
mutually exclusive options, the original set Oi is temporarily replaced by the set
V Oi of all virtual options” Boysen et al. [2009]

3: Determine the respective task time ti(v) and the probability p(v) for each virtual
option v belonging to V Oi.

Where p(v) represents the probability of the case that all options o belonging to v
are chosen and all the remaining options o belong to Oi.
If a task i is not required for a virtual option v belonging to V Oi, its task time
ti(v) will be set to zero.

4: The joint task times can be computed by the following eq. (5.4):

t̄i =
∑
v∈V Oi

P (v) · ti(v) ∀ i (5.4)

Boysen et al. [2009] then split the set V into three disjoint subsets VA ∪ VB ∪ VC = V
to which a task i is assigned with regard to the number and interaction of options in
the set Oi as follows:

Common tasks: The tasks that belong to VA have to be performed on any model
independent of the required options, i.e., Oi = O, including the event that no option
is chosen at all. Moreover, these tasks have similar task times ti for all option

36 5. Proposed Methodology

combinations. Then, the joint task times are, t̄i = ti thus eliminating Steps 2 to 4
for all tasks i belonging to VA.

Single-option tasks: VB consists of all the tasks which can only be assigned to a
single option occurrence. This encompasses all the tasks with a single binary option
(|Oi| = 1). An example of a binary option, whether there will be a navigation
system in the car or not, it’s either a yes or a no. A task i can also be interpreted
as a single-option task even with more than one option O[i], provided that these
options o must be mutually exclusive, meaning these options can not be present
simultaneously on the same model. In this case of a single-option task i, the joint
processing time /bar[t][i] reflects the weighted average of the processing time needed
for all the option-specific tasks t[io] in proportion to the probability of occurrence
P[o] of the respective option. Thus, Steps given above from 2 to 4 will be replaced
by directly computing the following eq. (5.5):

t̄i =
∑
oεOoi

Po · tio ∀ i ∈ V B (5.5)

Multiple-option tasks: The subset VC consists of all tasks i, which have a set of
options (|Oi| > 1), where at least two of these options are able to occur indepen-
dently. Further, the task processing times may differ between the various possible
combinations of options. In these cases, Steps 2 to 4 must be implemented for all
the tasks i belonging to VC . For an in-depth comprehension, the reader can refer to
the paper Boysen et al. [2009] for a detailed example.

Option-mix approach, despite being a very good remedy for the highly productive
mixed-model facilities, also has some limitations because of the stochastic nature of
this method. These limitations are explained by Boysen et al. [2009] as follows:

The balancing of the assembly line, when using this approach, is relying on estimated
processing times. To balance an assembly line in this way cannot ensure its operation
without capacity violations. The reason is that both task times and the resulting
workstation processing times are of probabilistic nature, which still holds even in cases
where the processing times themselves are deterministic. Secondly, the prediction of
the sales, which is based on existing sales data, can be problematic due to forecasting
errors. Since the joint processing graph is heavily dependent on the sales data, these
forecasting errors can lead to an inefficient assembly line.

To tackle the probabilistic nature of these problems, it has to be noted that the
combined probabilities of a joint precedence graph necessarily result in an optimization
for a line balance that is also probabilistic in nature. Thus, this technique does not
prevent cycle time violations, although a constraint can be added, which can only
guarantee to a certain degree of likelihood that workstation processing times will not
exceed the cycle time by a certain percentage. It can not be guaranteed 100%.

For a high diversity in products, the option mix approach is nevertheless a good
alternative for the traditional model mix approach. Therefore, it can be considered
as a trade-off between the reduction of planning efforts and precision in the solutions,
and is befitting for practical scenarios.

5.2. Multi-Objective Evolutionary Algorithms 37

5.2 Multi-Objective Evolutionary Algorithms

The second part of this section consists of optimization, and the two multi-objective
evolutionary algorithms chosen for this study are NSGA-II and NSGA-III. The
fundamentals of evolutionary algorithms have been discussed in the background
section.

5.2.1 NSGA-II

The elitist non-dominated sorting genetic algorithm II (NSGA-II), given by Deb
et al. [2002], is a widely used EMO procedure that seeks multiple Pareto optimal
solutions to a multi-objective optimization problem. It possesses the following three
characteristics:

1. It is based on an elitist premise.

2. It incorporates an explicit mechanism for preserving diversity.

3. It places an emphasis on non-dominated solutions.

Amouzgar [2012] explains the NSGA-II as follows: At any generation t, the offspring
population Qt is initially constructed using the parent population Pt and standard
genetic operators (crossover and mutation). Afterwards, the two populations are
joined to generate a new population (Rt) with a size of 2N (where, N is the size of
the initial population). The individuals of the population Rt are then categorized
into various non-dominated fronts.

Following that, a new population of size N is gradually populated by choosing
solution out of Rt. The re-population process begins with the first non-dominant
front and progresses towardsthe individuals in the second non-dominant front, and
so on. Due to the fact that R′

ts total population size is 2N , not all fronts can be
accommodated within this population of size N For this reason, all extra fronts are
eventually eliminated. When the final permissible front is evaluated, it is possible
that the front contains more solutions or individuals than the available slots in
the new population, see fig. 5.2. Rather than randomly selecting some individuals
from this last permissible front, the individuals that contribute to the diversity are
selected.

38 5. Proposed Methodology

Figure 5.2: Shows the whole Procedure of NSGA-II with Crowding Distance Method
Ren et al. [2018]

Figure 5.3: Shows the Crowding Distance Method to Preserve Diversity among the
Solutions Deb et al. [2002]

For the individuals of the last front, which cannot all be included fully, a crowded-
sorting method is used to prioritize the solutions. For every solution in the objective
space a crowding distance is calculated, and then the solutions with the greatest
crowding distances are included first, until no more solutions can be added. The
crowding distance di, for a point i, is obtained by measuring the size of the objective
space around i, which is not covered by any other solution. For faster calculation,
the nearest neighbours of i create a cuboid, whose perimeter can be used as an
approximation, which is the method that is used here, see fig. 5.3.

5.2.2 NSGA-III
The non-dominated sorting genetic algorithm III (NSGA-III) is a reference-point-
based evolutionary algorithm for many-objective problems, which is based on the
framework of NSGA-II and proposed by Deb and Jain [2013]. NSGA-III focuses on
the individuals in the population that are non-dominated and closer to the set of

5.2. Multi-Objective Evolutionary Algorithms 39

given reference points. Details for the implementation of this algorithm can be found
in Blank et al. [2019].

The non-dominating sorting as shown in the fig. 5.4 is done in similar fashion as in
NSGA-II.

Figure 5.4: Shows the non-dominating sorting process, Blank and Deb [2020]

The next step is to select the solutions from these different fronts, while some solutions
need to be discarded. NSGA-III does that by selecting the underrepresented reference
directions first. In case there is no solution assigned to the reference direction, The
solution with the smallest perpendicular distance in the normalized objective space
will be selected. If another solution for the same reference direction has been added,
then the assignment of these solutions will be decided randomly Blank and Deb
[2020].

Figure 5.5: Selecting solutions closer to reference directions, Blank and Deb [2020]

40 5. Proposed Methodology

According to Deb and Jain [2013], NSGA-III has been proven to successfully converge
and found diverse sets of solutions for many-objective problems. Thus, this algorithm
has been selected for this study along with NSGA-II. The detailed comparison
between NSGA-II and NSGA-III is presented in the results section.

5.2.3 Components of the Algorithms

Following is the description of the crucial components used in NSGA-II and NSGA-III,
and the explanation on how they are used in this study.

Representation of the Decision Variables

The decision variables are given by a sequence of integers. Each task is denoted by
a number that is added to a vector (i.e., chromosome) with a length equal to the
total number of tasks. The tasks are arranged on the chromosome in the sequence in
which they are processed and ideally without violating the precedence constraints
(in which case a penalty would be applied, as discussed further down). The tasks are
then assigned to workstations in such a way that the total time spent on tasks at
each workstation does not violate the cycle time constraint Sabuncuoglu et al. [2000].

Figure 5.6: Shows a chromosome or a potential solution for a problem with 9 tasks

Initial Population

The initial population is generated randomly, and may or may not include feasible
solutions. Importantly, the size of the population should be adjusted according to
the size of the chromosome, otherwise it may result in very high computational
time or low overall diversity. The population for problems with a large chromosome
size should therefore be larger than the population for problems with a smaller
chromosome size. To maintain good diversity, the choice of an appropriate size of
population is crucial.

Crossover:

The crossover, also known as recombination, has been defined as follows: Two parents
will be selected for the crossover and will produce a single offspring. The first parent
will be cut at two points. These two points are positioned in such a way that they
divide the first parent into three sections, and the middle section is one-third of the
size of the parent. The offspring takes the same genes encapsulated by the points at
the same location as the first parent, and the genes on the outside of the cut-points
are taken from the second parent in the same order they appear. This procedure is
demonstrated in fig. 5.7. Moreover, whether to perform a crossover or not depends
on a crossover probability, and this probability has been set to 0.9.

5.2. Multi-Objective Evolutionary Algorithms 41

Figure 5.7: Shows the crossover for two parents with two cutting points each, resulting
in a single child. In this case the problem has 9 tasks.

Mutation

The process of mutation involves modification of the current configuration of a
chromosome. These modifications can be of different sorts, but in this study the
mutation has been defined as follows: An offspring or a child will be selected for the
mutation and will be cut at two random points. These two cutting points will divide
the child or the selected chromosome into three sections. Then, the sequence of the
middle section will be reversed, while the other two sections will remain unchanged.
Let’s assume that the random cutting points result in three equal parts, then the
mutated child might look like in fig. 5.8. The probability of mutation has been set to
0.3.

Figure 5.8: Shows the mutation procedure, resulting from a single offspring with two
random cutting points, for a problem with 9 tasks.

Selection Procedure

Tournament selection has been chosen as the selection mechanism. Individuals or
parents will be selected at random from the population according to the tournament
size. Here, the tournament size is set to be three; hence, three individuals will be
selected each time. These selected individuals will then be compared against each
other, and the individual with the weakest fitness will not be selected. This method
of selection makes sure that the worst individual in the population is never chosen.

42 5. Proposed Methodology

Stopping Criteria

The stopping criteria is given by “the total number of generations”. This number is
dependent on the size of the problem. Otherwise, the algorithm may fail to uncover
promising solutions and converge pre-maturely or may take an unnecessary time to
compute. In this study, five problems are being selected with different instances and
the number of generations selected for these problems ranges from 50 to 1500 (these
numbers were selected on the basis of trial and error).

Constraint Handling Method

In order to deal with infeasible solutions, a penalty value is used. Solutions that
violate the precedence constraints will be subjected to severe penalties (they will be
assigned the worst objective values). However, these solutions will remain in the
population to maintain the diversity and because of the possibility to evolve into
promising solutions in later generations.

The penalized value is set proportional to the deviation of an infeasible solution from
a feasible one. In other words, an infeasible solution that violates only one constraint
will be penalized less severely than a solution that violates two constraints. In the
light of experiments, this allowed the algorithm to be biased towards relatively better
solutions during the selection phase and reduced the computational time significantly,
as compared to the scenario where all infeasible solutions were penalized equally. It
should be noted that the penalty values were chosen such that the worst feasible
solution is still always better than the best infeasible solution.

Station Restrictions

In reality, not every workstation or operator can perform all the tasks, and this
fact has been taken into consideration in this thesis. Station restrictions inform us
whether a specific task can be done on the selected workstation or not. To tackle this
challenge, a simple heuristic has been introduced, which comprises two main steps.

The idea behind this heuristic is very simple: first to categorize tasks according to the
workstations on which they can be performed. The second step is the allocation of
these tasks according to these categories. When assigning tasks to workstations from
the decision variables, the proposed method will check the category of the previous
task. If the present and previous tasks belong to the same category, only then will
the present task be allocated to the same workstation (assuming that doesn’t violate
the cycle time constraint), otherwise the next workstation in the assembly line will
be used. This makes sure that no task is given to a workstation not compatible with
the allocated task.

In addition, if there are no conflicting precedence relations and no violations of the
cycle time constraint, then the tasks from the same group will always be allocated to
the same workstation, otherwise a next workstation in the assembly line has to be
used.

6. Results and Analysis

Following are the five problems considered for the evaluation of the selected method-
ology,

1. Bowman’s Problem

2. Buxey’s Problem

3. WeeMag’s Problem

4. Mixed-model Camera Problem

5. Mixed-model SmartPhone Problem

The first three problems are taken from Scholl [1993] where they are presented as a
benchmark for simple assembly line problems. Although this study is dealing with
multi-objective mixed-model assembly line balancing problems, instead of simple
assembly line balancing problems, these benchmarks can be used to evaluate the
second part (optimization with NSGA-II and NSGA-III) of the methodology. The
chosen benchmarks are of three different sizes, the smallest problem with 8 tasks
(Bowman), the medium problem with 29 tasks (Buxey) and one of the largest
problems with 75 tasks (WeeMag).

The last two problems are related to mixed-model assembly lines, including the
mixed-model camera problem taken from Uddin and Lastra [2011], and a mixed-
model smartphone problem, which was based on previous research published in
cooperation with the supervisors of this thesis, Seidelmann et al. [2021].

Only the smartphone problem encapsulates the aspects of mixed-model assembly
lines, stations restrictions and multi-objective optimization fully. To the best of our
knowledge, there are no benchmarks for multi-objective mixed-model assembly lines.
Hence, we had to create a scenario that is as close to the real world problems as
possible. The existing benchmarks in the literature are not sufficient and need to be
reviewed, a lot of work needs to be done in this direction, but this topic is out of the
scope of this study.

44 6. Results and Analysis

Each problem has been tested in a multi-objective formulation (cycle time, number
of workstations, and smoothness index) and in a many-objective formulation (cycle
time, number of workstations, variance in task distribution, and total idle time).
NSGA-II and NSGA-III have been run for 31 times for each problem with multi-
and many-objectives. A crossover probability of 0.9 and a mutation probability of
0.3 were chosen. A very detailed comparison between these two algorithms is given
below using the following performance indicators,

1. Hypervolume (HV)

2. Inverted Generational Distance (IGD)

3. Dominance Ratios (DR)

For the calculation of these performance indicators, all solutions found by each
algorithm and each run are archived in one place. In order to have a reference, a
combined Pareto front for each problem is created from both the algorithms and
all their runs and solutions for that problem. Using this reference front, the final
generations of each run are then compared.

6.1 The Bowman Benchmark Problem
The Bowman’s benchmark is one of the smallest and the simplest problems in the
literature, with 8 tasks. The fig. 6.1 shows the precedence graph of Bowman’s
problem with the corresponding processing time for each task.

Figure 6.1: Bowman’s precedence graph

6.1.1 Results for the Multi-Objectives Case

The algorithms NSGA-II and NSGA-III were run on the multi-objective scenario
for minimization of cycle time, number of workstations, and smoothness index. The
population size was set to 100 and there were 10,000 evaluations per run.

The fig. 6.2 shows the set of non-dominated solutions from all solutions evaluated
over the 31 runs for NSGA-II and NSGA-III. Since the problem is of simplistic

6.1. The Bowman Benchmark Problem 45

nature, it is very apparent that both algorithms were able to converge to the optimal
solutions. There is no difference between the two Pareto fronts, however, fig. 6.3
shows that NSGA-II converges faster than NSGA-III with a small margin, although
NSGA-III eventually finds better solutions on average. Additionally, the colors of the
Pareto fronts show that smoothness index is not a perfect substitute for the number
of workstations. This observation also holds true for several other experiments.

Figure 6.2: Pareto front for the multi-objective Bowman problem.

Figure 6.3: Hypervolume convergence of Bowman’s problem for both algorithms
across all the generations and runs. Standard deviation is represented by the shaded
area.

The table 6.1 shows a test for statistical significance between the results of NSGA-II
and NSGA-III in terms of HV, IGD and DR. The high p values indicate that both
algorithms have performed significantly similar and no statistical difference can be
derived.

46 6. Results and Analysis

P-Values for Bowman’ Problem

P HV P IGD P DR

0.4049 0.7390 0.4052

Table 6.1: Shows statistical significance between final generations of NSGA-II and
NSGA-III for Bowman’s problem (multi-objective case).

Average and median values for HV, IGD and DR are shown in the table 6.2. The
performance of both algorithms is almost identical, however, NSGA-II has performed
better with regard to DR by a small margin and NSGA-III has performed a little
better with regard to HV and IGD.

Mean Performance Indicators

Algorithm Hypervolume Inverted Generational Distance Dominance Ratios

NSGA-II 0.0809 3.6735 0.3134

NSGA-III 0.0837 3.6293 0.2451

Median Performance Indicators

NSGA-II 0.0773 3.9292 0.3333

NSGA-III 0.1020 2.8640 0.25

Table 6.2: Median and average values of performance indicators of the last generations
for multi-objective Bowman’s problem.

6.1.2 Results for the Many-Objectives Case

The algorithms NSGA-II and NSGA-III were run on the many-objective scenario for
minimization of cycle time, number of workstations, variance in task distribution, and
total idle time. The population size was set to 220 and there were 11,000 evaluations
per run.

The fig. 6.4 shows the set of non-dominated solutions from all solutions evaluated
over the 31 runs for NSGA-II and NSGA-III. Both algorithms converged to the
same solutions. While there is no difference between the two Pareto fronts, fig. 6.5
shows that NSGA-II converged faster than NSGA-III with a small margin, although
NSGA-III had less variation in hypervolume values.

6.1. The Bowman Benchmark Problem 47

Figure 6.4: Pareto front for the many-objective Bowman problem.

Figure 6.5: Hypervolume convergence of Bowman’s problem for both algorithms
across all the generations and runs. Standard deviation is represented by the shaded
area.

The table 6.3 shows a test for statistical significance between the results of NSGA-II
and NSGA-III in terms of HV, IGD and DR. Once again, the high p values indicate
that both algorithms have performed significantly similar and no statistical difference
can be derived.

P-Values for Bowman’ Problem

P HV P IGD P DR

0.8908 0.4907 0.8004

Table 6.3: Shows statistical significance between final generations of NSGA-II and
NSGA-III for Bowman’s problem (many-objective case).

48 6. Results and Analysis

Average and median values for HV, IGD and DR are shown in the table 6.4. The
performance of both algorithms is almost identical.

Mean Performance Indicators

Algorithm Hypervolume Inverted Generational Distance Dominance Ratios

NSGA-II 0.0625 3.5984 0.2822

NSGA-III 0.0629 3.9155 0.2688

Median Performance Indicators

NSGA-II 0.0831 3.7151 0.25

NSGA-III 0.0542 3.7151 0.25

Table 6.4: Median and average values of performance indicators of the last generations
for many-objective Bowman’s problem.

6.2 The Buxey Benchmark Problem
The Buxey benchmark problem is of medium size and one of the comparatively
simpler problems in the literature. It contains 29 tasks. The fig. 6.6 shows the
precedence graph of Buxey’s problem with the corresponding processing time for
each task.

Figure 6.6: Buxey’s precedence graph

6.2.1 Results for the Multi-Objectives Case
The algorithms NSGA-II and NSGA-III were run for the multi-objective scenario
for three objectives, cycle time, number of workstations and smoothness index. The
population size was set to 100 and there were 100,000 evaluations in total. The
fig. 6.8 shows the set of non-dominated solutions from all solutions evaluated over
the 31 runs for NSGA-II and NSGA-III. Both algorithms have performed well, with

6.2. The Buxey Benchmark Problem 49

only slight differences. The fig. 6.8 shows that NSGA-II, again, converges faster
than NSGA-III. However, in this scenario NSGA-III obtained noticeably better HV
values, even in the final generations. It can also be seen that both algorithms kept
improving even towards the end. Therefore, they might have benefited from more
computational time.

Figure 6.7: Pareto front for the multi-objective Buxey problem.

Figure 6.8: Hypervolume convergence of Buxey’s problem for both algorithms across
all the generations and runs. Standard deviation is represented by the shaded area.

The table 6.5 shows a statistical significant difference between NSGA-II and NSGA-
III in terms of achieved HV. The value for IGD is also low, but doesn’t indicate a
strong difference. Finally, the value or DR shows that there is a significant overlap
among the final solutions produced by both algorithms in this regard.

50 6. Results and Analysis

P-Values for Buxey’s Problem

P HV P IGD P DR

0.0599 0.1263 0.3036

Table 6.5: Shows statistical significance between final generations of NSGA-II and
NSGA-III for Buxey’s problem (multi-objective case).

Average and median values for HV, IGD and DR are shown in the table 6.6. The
performance of both algorithms is close, however, NSGA-III has performed better
for the median values and seems to have an edge in HV values.

Mean Performance Indicators

Algorithm Hypervolume Inverted Generational Distance Dominance Ratios

NSGA-II 0.4398 4.3947 0.4533

NSGA-III 0.46211 4.0925 0.4976

Median Performance Indicators

NSGA-II 0.4380 4.3097 0.4285

NSGA-III 0.5479 3.9048 0.5

Table 6.6: Median and average values of performance indicators of the last generations
for multi-objective Buxey’s problem.

6.2.2 Results for the Many-Objectives Case

The algorithms NSGA-II and NSGA-III were run on the many-objective scenario
for four objectives, cycle time, number of workstations, variance in task distribution
and total idle time. The population size was set to 120 and there were 72,000
evaluations in total. The fig. 6.9 shows the set of non-dominated solutions from all
solutions evaluated over the 31 runs for NSGA-II and NSGA-III. Both algorithms
converged to mostly the same solutions, with slight differences. The fig. 6.10 shows
that NSGA-II was able to find good solutions faster than NSGA-III, as before. In
this case, NSGA-III did not eventually take the lead from NSGA-II, though.

6.2. The Buxey Benchmark Problem 51

Figure 6.9: Pareto front for the many-objective Buxey problem.

Figure 6.10: Hypervolume convergence of Buxey’s problem for both algorithms across
all the generations and runs. Standard deviation is represented by the shaded area.

As the table 6.7 shows, there is no tractable statistical difference between the results
of NSGA-II and NSGA-III for any of the performance indicators regarding their last
generations. The same was also indicated by fig. 6.10.

P-Values for Buxey’s Problem

P HV P IGD P DR

0.7989 0.5435 0.6189

Table 6.7: Shows statistical significance between final generations of NSGA-II and
NSGA-III for Buxey’s problem (many-objective case)

52 6. Results and Analysis

Average and median values for HV, IGD and DR are shown in the table 6.8. The
performance of both algorithms is almost identical in all aspects.

Mean Performance Indicators

Algorithm Hypervolume Inverted Generational Distance Dominance Ratios

NSGA-II 0.4979 7.239 0.4646

NSGA-III 0.4943 7.0411 0.4470

Median Performance Indicators

NSGA-II 0.4967 7.3085 0.4666

NSGA-III 0.5028 7.10005 0.4738

Table 6.8: Median and average values of performance indicators of the last generations
for many-objective Buxey’s problem.

6.3 The WeeMag Benchmark Problem
The WeeMag benchmark problem is one of the largest among all problems in the
literature, and contains 75 tasks. The fig. 6.11 shows the precedence graph of
WeeMag’s problem with the corresponding processing time for each task.

Figure 6.11: WeeMag’s precedence graph

6.3. The WeeMag Benchmark Problem 53

6.3.1 Results for Multi-Objectives Case
The algorithms NSGA-II and NSGA-III were run for the multi-objective scenario
for three objectives, cycle time, number of workstations and smoothness index. The
population size was set to 100 and 150,000 evaluations in total. The fig. 6.12 shows
the set of non-dominated solutions from all solutions evaluated over the 31 runs for
NSGA-II and NSGA-III. Both algorithms agree on the Pareto fronts, with only very
slight differences. The fig. 6.13 shows that NSGA-II found the final solution set faster
than NSGA-III with a small margin, upholding the previously established trend.

Figure 6.12: Pareto front for the multi-objective WeeMag problem.

Figure 6.13: Hypervolume convergence of WeeMag’s problem for both algorithms
across all the generations and runs. Standard deviation is represented by the shaded
area.

Once again, there is little statistical difference between the performance of NSGA-II
and NSGA-III as indicated by the table 6.9.

54 6. Results and Analysis

P-Values for WeeMag’s Problem

P HV P IGD P DR

0.5052 0.5052 0.9375

Table 6.9: Shows statistical significance between the last generations of NSGA-II and
NSGA-III for WeeMag’s problem (multi-objective case).

Average and median values for HV, IGD and DR are shown in the table 6.10.
The performance of both algorithms is almost identical with respect to the final
generations.

Mean Performance Indicators

Algorithm Hypervolume Inverted Generational Distance Dominance Ratios

NSGA-II 0.7652 8.0162 0.49100

NSGA-III 0.7632 8.0946 0.4971

Median Performance Indicators

NSGA-II 0.7688 7.8107 0.5106

NSGA-III 0.7655 8.031 0.4897

Table 6.10: Median and average values of performance indicators of the last genera-
tions for multi-objective WeeMag’s problem.

6.3.2 Results for Many-Objectives Case

The algorithms NSGA-II and NSGA-III were run for the many-objective scenario
for four objectives, cycle time, number of workstations, variance in task distribution
and total idle time. The population size was set to 120 and there were 120,000
evaluations for each run. The fig. 6.14 shows the set of non-dominated solutions from
all solutions evaluated over the 31 runs for NSGA-II and NSGA-III. Again, both
algorithms were able to find almost identical Pareto fronts. From fig. 6.15, however,
it is visible that NSGA-II had a very significant and consistent lead in convergence
towards the final solution sets, while also having slightly less variance in the process.
Interestingly, the final generations show very little variance for both algorithms.

6.3. The WeeMag Benchmark Problem 55

Figure 6.14: Pareto front for the many-objective WeeMag problem.

Figure 6.15: Hypervolume convergence of WeeMag’s problem for both algorithms
across all the generations and runs. Standard deviation is represented by the shaded
area.

The table 6.11 shows that there is a statistical significant difference between the final
generations found by NSGA-II and NSGA-III for all performance metrics, especially
IGD.

P-Values for WeeMag’s Problem

P HV P IGD P DR

0.0599 0.00006 0.0072

Table 6.11: Shows statistical significance between the last generations of NSGA-II
and NSGA-III for WeeMag’s problem (many-objective case).

56 6. Results and Analysis

Average and median values for HV, IGD and DR are shown in the table 6.12.
The performance of both algorithms is close. However, it is evident that NSGA-II
performed noticeably better for every metric, especially in regards to IGD and DR.

Mean Performance Indicators

Algorithm Hypervolume Inverted Generational Distance Dominance Ratios

NSGA-II 0.8219 12.7018 0.4773

NSGA-III 0.8189 14.782 0.3736

Median Performance Indicators

NSGA-II 0.82186 12.6898 0.4696

NSGA-III 0.8187 14.2789 0.3636

Table 6.12: Median and average values of performance indicators of the last genera-
tions for many-objective WeeMag’s problem.

6.4 TheMixed-ModelCameraManufacturingProblem

The mixed-model camera problem is one of the smaller sized problems, and it is
discussed in the paper Uddin and Lastra [2011]. This problem has just 10 tasks. The
fig. 6.16 shows the precedence graph for the camera problem with the corresponding
processing times for each task.

Figure 6.16: Camera’s precedence graph

The information for the different models of the cameras is given by the following
fig. 6.17, based on the table given by Uddin and Lastra [2011].

6.4. The Mixed-Model Camera Manufacturing Problem 57

Figure 6.17: Information about processing times for all 4 models of the camera.

This problem has been modified to be a multi-objective problem unlike given in the
paper Uddin and Lastra [2011]. The results here are therefore not directly comparable
to theirs. However, before the modification of this problem, the algorithms have been
tested using the single-objective version of the problem. It was observed that both
algorithms were able to find the optimal results that were also given by the original
paper.

6.4.1 Results for the Multi-Objectives Case

The algorithms NSGA-II and NSGA-III were run on the multi-objective scenario
for three objectives, cycle time, number of workstations and smoothness index. The
population size was set to 100 and there were 10,000 evaluations for each run. The
fig. 6.18 shows the set of non-dominated solutions from all solutions evaluated over
the 31 runs for NSGA-II and NSGA-III. In this case, both algorithms have performed
equally well. However, fig. 6.19 shows that NSGA-II converges significantly faster
than NSGA-III, as seen before.

58 6. Results and Analysis

Figure 6.18: Pareto front for the multi-objective camera problem.

Figure 6.19: Hypervolume convergence of the camera problem for both algorithms
across all the generations and runs. Standard deviation is represented by the shaded
area.

The table 6.13 shows a lack of statistical significant differences between the results of
NSGA-II and NSGA-III for all performance metrics regarding the final generations.

P-Values for Mixed-Model Camera Problem

P HV P IGD P DR

0.9753 0.8936 0.2162

Table 6.13: Shows statistical significance between final generations of NSGA-II and
NSGA-III for the camera problem (multi-objective case).

6.4. The Mixed-Model Camera Manufacturing Problem 59

Average and median values for HV, IGD and DR are shown in the table 6.14.
Evidently, the performance of both algorithms is almost the same.

Mean Performance Indicators

Algorithm Hypervolume Inverted Generational Distance Dominance Ratios

NSGA-II 0.0359 4.3759 0.1747

NSGA-III 0.0360 4.2602 0.2607

Median Performance Indicators

NSGA-II 0.0351 3.8061 0.25

NSGA-III 0.03425 5.5295 0.25

Table 6.14: Median and average values of performance indicators of the last genera-
tions for the multi-objective Camera problem.

6.4.2 Results for the Many-Objectives Case

The algorithms NSGA-II and NSGA-III were run for the many-objective scenario for
four objectives, cycle time, number of workstations, variance in task distribution and
total idle time. The population size was set to 100 and there were 50,000 evaluations
for each run. The fig. 6.20 shows the set of non-dominated solutions from all solutions
evaluated over the 31 runs for NSGA-II and NSGA-III. It can be seen that both
algorithms converged to the same solutions. The fig. 6.21 shows that NSGA-II was
able to find better solutions faster than NSGA-III by a small margin, although
NSGA-III tended to converge to better solutions in the end. Both algorithms were
able to solve this problem faster than expected and didn’t need nearly as many
evaluations as were used, giving the graph a compressed look on the x-axis.

Figure 6.20: Pareto front for the many-objective camera problem.

60 6. Results and Analysis

Figure 6.21: Hypervolume convergence of the camera problem for both algorithms
across all the generations and runs. Standard deviation is represented by the shaded
area.

The table 6.15 shows that there was no statistical significant difference between the
final generations of NSGA-II and NSGA-III for any performance metric.

P-Values for Mixed-Model Camera Problem

P HV P IGD P DR

0.6583 0.9297 0.4176

Table 6.15: Shows statistical significance between final generations of NSGA-II and
NSGA-III for the camera problem (many-objective case).

Average and median values for HV, IGD and DR are shown in the table 6.16. The
performance of both algorithms is almost the same, however, NSGA-III has performed
slightly better than NSGA-II overall.

6.5. The Mixed-Model SmartPhone Problem 61

Mean Performance Indicators

Algorithm Hypervolume Inverted Generational Distance Dominance Ratios

NSGA-II 0.0287 3.8735 0.2123

NSGA-III 0.0291 3.6742 0.2634

Median Performance Indicators

NSGA-II 0.0270 6.1949 0.2

NSGA-III 0.0300 6.2097 0.25

Table 6.16: Median and average values of performance indicators of the last genera-
tions for the many-objective camera problem.

6.5 The Mixed-Model SmartPhone Problem
The mixed-model smartphone problem is one of the medium to large sized problems.
It has been fabricated in a way that it has very close resemblance to the real world
mixed-model problems and contains 44 tasks. The fig. A.16 in the appendix, shows
the precedence graph of the smartphone problem consisting all the possible options.
The fig. 6.22 shows the joint precedence graph after taking all the probabilities for
each option into consideration.

Group Task Number

A 1

B 2

C 3

D 4

E 5

F 6,8,19

G 9

H 10

I 11

J 12,13,14,16

K 15, 17, 21

L 18, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 44

M 20

N 41

O 43

Table 6.17: Shows grouping of the tasks that are of the same nature and can be
performed by the same workstations.

62 6. Results and Analysis

The mixed-model smartphone manufacturing process provides 9 tasks that come
with different options to choose from. Table 6.18 and Table 6.19 show all the details
of the smartphone manufacturing process along with the description for each task
and its options. The table 6.17 shows categorization of all the tasks into similar
categories that can be performed by the same kind of workstation. Considering all
option possibilities, 15,552 different models of the smartphone can be manufactured.
For the sake of visualization, 3 possible models out of the 15,552 models are shown
in the appendix : fig. A.17, fig. A.18, and fig. A.19.

Tasks Options Nature of the Tasks Precedence

1. Die Group Case Molding no options Common task (Mandatory) -

2. Cutting Molding Excess no options Common task (Mandatory) 1. Die Group Case Molding

3. Case Anodizing no options Common task (Mandatory) 2. Cutting Molding Excess

4. Antenna Interface Cutting no options Common task (Mandatory) 3. Case Anodizing

5. Creating Plastic Speaker Cover no options Common task (Mandatory) 4. Antenna Interface Cutting

6. Case Drilling no options Common task (Mandatory) 5. Creating Plastic Speaker Cover

7. Cutting Antenna Groove no options Common task (Mandatory) 5. Creating Plastic Speaker Cover

8. Case Outline Precision Cutting no options Common task (Mandatory) 5. Creating Plastic Speaker Cover

9. Case Sand Blasting no options Common task (Mandatory)
6. Case Drilling

7. Cutting Antenna Groove
8. Case Outline Precision Cutting

10. Case Plating no options Common task (Mandatory) 9. Case Sand Blasting

11. Anti-Oxidant Coating no options Common task (Mandatory) 10. Nickel Case Plating

12. Cut Glass into Shape no options Common task (Mandatory) -

13. Attach Protective Film to Glass no options Common task (Mandatory) 12. Cut Glass into Shape

14. Mount Glass on Cutting Surface no options Common task (Mandatory) 13. Attach Protective Film to Glass

15. Press Bond Protective Film to Glass no options Common task (Mandatory) 14. Mount Glass on Cutting Surface

16. Cut Excess of Protective Film no options Common task (Mandatory) 15. Press Bond Protective Film to Glass

17. Join Glass and LCD Display no options Common task (Mandatory) 16. Cut Excess of Protective Film

18. Check LCD Functionality no options Common task (Mandatory) 17. Join Glass and LCD Display

19. Case Inside Precision Cut no options Common task (Mandatory) 5. Creating Plastic Speaker Cover

20. Injection Molding Back Shell no options Common task (Mandatory) -

21. Joining Case and Back Shell no options Common task (Mandatory)
11. Anti-Oxidant Coating

19. Case Inside Precision Cut
20. Injection Molding Back Shell

22. Split PCB no options Common task (Mandatory) -

23. Assemble Camera Module [Single Camera, Double Camera, Triple Camera] XOR (mutually exclusive tasks) 22. Split PCB

24. Attach Camera Cover no options Common task (Mandatory) 23. Assemble Camera Module

25. Test Camera Module no options Common task (Mandatory) 23. Assemble Camera Module

26. Install CPU on Motherboard [Quad Core, Octo Core] XOR (mutually exclusive tasks) 22. Split PCB

27. Install RAM on Motherboard [4 GB, 8 GB, 12 GB] XOR (mutually exclusive tasks) 22. Split PCB

28. Install Mandatory Communication Chips no options Common task (Mandatory) 22. Split PCB

29. Install 5G Chip no options Optional 28. Install Mandatory Communication Chips

30. Install Mandatory Sensor Chips no options Common task (Mandatory) 22. Split PCB

31. Install Optional Sensor Chips [Thermometer, Barometer, Humidity Sensor] Multi-optional (Can be selected arbitrarily) 30. Install Mandatory Sensor Chips

32. Install SIM Card Reader [Single SIM, Dual SIM] XOR (mutually exclusive tasks) 22. Split PCB

33. Connect SSD to Motherboard no options Common task (Mandatory) 22. Split PCB

34. Bolt Motherboard to Case no options Common task (Mandatory)

21. Joining Case and Back Shell
24. Attach Camera Cover
25. Test Camera Module

26. Install CPU on Motherboard
29. Install 5G Chip

31. Install Optional Sensor Chips
32. Install SIM Card Reader

33. Connect SSD to Motherboard

35. Wire Motherboard and Other PCBs no options Common task (Mandatory) 34. Bolt Motherboard to Case

36. Install Battery no options Common task (Mandatory) 35. Wire Motherboard and Other PCBs

37. Screw in Plastic PCB Covers no options Common task (Mandatory) 36. Install Battery

38. Put Warning and Guarantee labels no options Common task (Mandatory) 37. Screw in Plastic PCB Covers

39. Attach Glass with LCD Display no options Common task (Mandatory) 37. Screw in Plastic PCB Covers

40. Install Software Packages [Package 1, Package 2, Package 3] XOR (mutually exclusive tasks) 39. Attach Glass with LCD Display

41. Engrave Back Shell [Nothing, Name Engraving, Pattern Engraving] XOR (mutually exclusive tasks) 21. Joining Case and Back Shell

42. Extensive Functionality Test no options Common task (Mandatory) 40. Install Software Packages

43. Print Gift Card no options Optional -

44. Package Smartphone no options Common task (Mandatory)

41. Engrave Back Shell
42. Extensive Functionality Test

43. Print Gift Card
18. check LCD Functionality

Table 6.18: Shows information about all the available options to create a smart-
phone model along with the nature of the options and full description of each task
corresponding to its number.

6.5. The Mixed-Model SmartPhone Problem 63

Combinations of options according to their nature Probabilities for each option combinations Processing time for each combination

only one 1 4

only one 1 1

only one 1 20

only one 1 2

only one 1 2

only one 1 3

only one 1 3

only one 1 4

only one 1 5

only one 1 10

only one 1 5

only one 1 6

only one 1 1

only one 1 2

only one 1 3

only one 1 5

only one 1 3

only one 1 4

only one 1 4

only one 1 4

only one 1 4

only one 1 2

3 mutually exclusive ways [0.3, 0.2, 0.5] [4, 5, 6]

only one 1 1

only one 1 7

2 mutually exclusive ways [0.4, 0.6] [3, 3]

3 mutually exclusive ways [0.2, 0.3, 0.5] [2, 3, 4]

only one 1 5

2 ways: either selected, or not selected [0.4, 0.6] [3, 0]

only one 1 7

8 ways: none, or any possible combination [0.3, 0.2, 0.05, 0.05, 0.05, 0.05, 0.05, 0.25] [0, 3, 3, 3, 5, 5, 5, 7]

2 mutually exclusive ways [0.4, 0.6] [3, 4]

only one 1 2

only one 1 5

only one 1 9

only one 1 3

only one 1 4

only one 1 2

only one 1 5

3 mutually exclusive ways [0.6, 0.3, 0.1] [6, 10, 14]

3 mutually exclusive ways [0.4, 0.3, 0.3] [0, 5, 7]

only one 1 15

2 ways: either selected, or not selected [0.05, 0.95] [0,5]

only one 1 3

Table 6.19: Shows information about all the possible combinations for each option,
along with their probabilities and processing times for each combination of the option.

64 6. Results and Analysis

Fi
gu

re
6.
22

:S
m

ar
tP

h
on

e
jo

in
t

p
re

ce
d
en

ce
gr

ap
h

6.5. The Mixed-Model SmartPhone Problem 65

6.5.1 Results for Multi-Objectives Case
The algorithms NSGA-II and NSGA-III were run for the multi-objective scenario
for three objectives, cycle time, number of workstations and smoothness index. The
population size was set to 100 and there were 80,000 evaluations for each run. The
fig. 6.23 shows the set of non-dominated solutions from all solutions evaluated over
the 31 runs for NSGA-II and NSGA-III. For the first time, the two algorithms are
found to disagree on the Pareto front substantially. As indicated by fig. 6.24 it is
evident that NSGA-II has performed significantly better than NSGA-III in terms of
HV, although it appears that neither algorithm was able to fully converge in the given
computational time. While NSGA-II was able to find better solutions, NSGA-III
found more non-dominated solutions.

Figure 6.23: Pareto front for the multi-objective SmartPhone problem.

Figure 6.24: Hypervolume convergence of the SmartPhone problem for both algo-
rithms across all the generations and runs. Standard deviation is represented by the
shaded area.

66 6. Results and Analysis

The table 6.20 shows that there is a moderate statistical difference between the
final generations of NSGA-II and NSGA-III in terms of HV, IGD. Only the value
for DR shows a strong significance. Despite the HV graph showing a big difference
between NSGA-II and NSGA-III, the statistical significance seems comparatively
low. This is explained by the very high variance present, which also shows in the HV
plot. The algorithms had difficulties escaping from infeasible solutions and even in
later generations frequently contained many infeasible ones, making the algorithms
perform more similarly than the plot seems to suggest.

P-Values for SmartPhone Manufacturing Problem

P HV P IGD P DR

0.1215 0.1763 0.0390

Table 6.20: Shows statistical significance between final generations of NSGA-II and
NSGA-III for the SmartPhone problem (multi-objective case).

Average and median values for HV, IGD and DR are shown in the table 6.21. It is
very apparent that, on average, NSGA-II has outperformed NSGA-III. Especially
because solutions found by NSGA-II have frequently dominated the best solutions
found by NSGA-III.

Mean Performance Indicators

Algorithm Hypervolume Inverted Generational Distance Dominance Ratios

NSGA-II 0.0075 10.322 0.6596

NSGA-III 0.0054 10.7469 0.3252

Median Performance Indicators

NSGA-II 0.005 10.3388 1.0

NSGA-III 0.004 11.1904 0.0

Table 6.21: Median and average values of performance indicators of the last genera-
tions for the multi-objective SmartPhone problem.

6.5.2 Results for the Many-Objectives Case

The algorithms NSGA-II and NSGA-III were run for the many-objective scenario
for four objectives, cycle time, number of workstations, variance in task distribution
and total idle time. The population size was set to 120 and there were 120,000
evaluations for each run. The fig. 6.25 shows the set of non-dominated solutions from
all solutions evaluated over the 31 runs for NSGA-II and NSGA-III. In this case,
both algorithms have performed more similar than before, and many more solutions
were found. The fig. 6.26 shows that NSGA-II, as usual, was able to converge to
the good solutions faster than NSGA-III, although in this case the final generations

6.5. The Mixed-Model SmartPhone Problem 67

showed little difference. Notably, there is much less variance in HV values overall
compared to the multi-objective case.

Figure 6.25: Pareto front for the many-objective SmartPhone problem.

Figure 6.26: Hypervolume convergence of the SmartPhone problem for both algo-
rithms across all the generations and runs. Standard deviation is represented by the
shaded area.

The table 6.22 shows that there was a statistical significant difference between the
results of NSGA-II and NSGA-III in terms of IGD and DR. However, the very high
value for HV suggests that both algorithms performed very similar with respect to
this metric.

68 6. Results and Analysis

P-Values for SmartPhone Manufacturing Problem

P HV P IGD P DR

0.5306 0.000001 0.0343

Table 6.22: Shows statistical significance between final generations of NSGA-II and
NSGA-III for the SmartPhone problem (many-objective case).

Average and median values for HV, IGD and DR are shown in the table 6.23. On
average, NSGA-II has outperformed NSGA-III significantly, especially in terms of
IGD. But also the achieved DR is very superior to NSGA-III.

Mean Performance Indicators

Algorithm Hypervolume Inverted Generational Distance Dominance Ratios

NSGA-II 0.1685 8.8476 0.3544

NSGA-III 0.1701 26.0437 0.2127

Median Performance Indicators

NSGA-II 0.1690 7.2906 0.3653

NSGA-III 0.1699 26.1232 0.1842

Table 6.23: Median and average values of performance indicators of the last genera-
tions for the many-objective SmartPhone problem.

6.5.3 Overall Results

The following table 6.24 and table 6.25 summarize overall performance of both
algorithms across all the problems for their final generations, based on the achieved
mean values of the performance indicators and the statistical significance of these
values. Grey colours indicate that there was no statistical significant difference, green
indicates that NSGA-II performed better, blue indicates that NSGA-III performed
better. The table 6.24 shows, that there was mostly no statistically significant
difference between the algorithms for multi-objective problems. In the cases where
there was a difference, each algorithm is represented equally. However, these tables
don’t capture the speed of convergence, in which case it was found that NSGA-II
consistently outperformed NSGA-III, making NSGA-II favoured overall.

6.5. The Mixed-Model SmartPhone Problem 69

Problem HV IGD DR

Bowman

Buxey

WeeMag

Mixed-Model Camera

Mixed-Model Smatphone

Table 6.24: Summarizing the results for multi-objective instances. Showing which
algorithm, on average, performed better using mean values. *NSGA-II has been
denoted by green colour and NSGA-III has been denoted by blue color. Results
without statistical significance are grey.

The table 6.25 displays similar information, but for the many-objective problems.
In these cases it can be clearly seen that NSGA-II has performed better overall
than NSGA-III, although for many problems the two still performed very similarly.
Notably, the differences are especially relevant for the harder to solve and larger
problems. Even though NSGA-III is designed for many-objective problems Deb
and Jain [2013], it was not superior to NSGA-II for these problems. Like in the
multi-objective case, this table doesn’t capture the convergence speed, which was
consistently superior for NSGA-II, making it the clearly superior choice for these
many-objective problems.

Problem HV IGD DR

Bowman

Buxey

WeeMag

Mixed-Model Camera

Mixed-Model Smartphone

Table 6.25: Summarizing the results for many-objective instances. Showing which
algorithm on average performed better using mean values. *NSGA-II has been
denoted by green colour and NSGA-III has been denoted by blue colour. Results
without statistical significance are grey.

The solutions best demonstrating the diversity for each problem have been selected
and explained in form of bar graphs. For the visualization of the found solutions
and to understand what each objective really means, the reader can refer to the
appendix.

The findings and analysis of results for the considered assembly line problems show
the multi-modal nature of the multi-objective mixed-model assembly line problem.
See table A.1 in the appendix, where several unique decision variables resulted in
the same objective values.

7. Conclusion

Assembly lines are a common manufacturing structure, a crucial aspect and a necessity
in most of the industries. It is often used to produce products fast and efficiently. Due
to the rising competition of today’s market, businesses want to ramp up production
versatility by lowering batch sizes and diversifying their products. This increase in
customization and production rate resulted in multi-objective mixed-model assembly
line balancing problems. Assembly line balancing problems are under discussion for
several decades and there is plenty of research that has been done. A lot of heuristics
and exact methods have been developed to solve the challenges of assembly line
balancing. However, most of the literature and work is based on simple assembly
lines that are not a true depiction of real world problems. Moreover, the complex
forms of assembly line problems that exist today because of vast production, cannot
be effectively addressed by traditional exact and heuristic methods. In recent years,
there has been a noticeable advancement in the direction of meta-heuristics and
general assembly line problems. Still, a lot of work needs to be done. Since, to the
best of our knowledge, there exists no standard benchmark for general assembly
line problems and most of the research papers are unique in their considerations of
the type of assembly line problem, challenges and chosen assembly line structure,
comparison among the used methodologies is not possible. Hence, it is hard to make
decisions on which meta-heuristics are best suited for these problems. It is to be
expected that the future research on this topic will more be focused on the use of
meta-heuristics and general assembly line problems.

This study makes a contribution to filling this gap in the literature. Mixed-model
assembly lines with station restrictions have been considered, and evolutionary
optimization techniques have been used to balance these assembly lines. In order to
have a high production rate, while making the process time and cost-effective, multiple
objectives have to be considered simultaneously. In this thesis, four objectives have
been considered, including the minimization of cycle time, number of workstations,
smooth task distribution and total idle time. This study addresses two main challenges,
modelling of the mixed-model assembly line as a single-model assembly line and
optimization of the assembly process to make it cost and time efficient, while
respecting station restrictions.

72 7. Conclusion

The option mix approach has been used to tackle the challenge of converting mixed-
model assembly lines into single-model assembly lines with the help of a joint
precedence graph. For optimization, multi-objective evolutionary algorithms, NSGA-
II and NSGA-III have been selected. Several problems are taken into consideration
for experimentation, including three famous benchmark problems (Bowman, Buxey
and WeeMag) alongside two mixed-model assembly line problems. Experiments have
shown that the proposed methodology and both algorithms can produce promising
results. Both algorithms were able to solve the benchmarks successfully. However,
NSGA-II has outperformed NSGA-III overall, especially with respect to speed of
convergence. Regarding final generation results, larger problems and many-objective
instances were better handled by NSGA-II, while smaller problem instances had very
little statistical significant differences between the algorithms.

The biggest challenge faced in this study was the lack of available benchmarks in the
literature for multi-objective multi-model assembly line problems. Since this study is
alone in regard to the combination of station restrictions, option mix joint precedence
graph, and evolutionary algorithms, it cannot be compared directly against any other
research paper, and neither have the proposed problems been implemented in any
real world scenario.

The findings and analysis of results for the considered assembly line problems, show
a multi-modal nature of the multi-objective mixed-model assembly line problem.
Several unique decision variable vectors resulted in the same objective values. For
this reason, other algorithms suitable for multi-modal problems can be expected to
perform well and might be used to improve upon this work.

The option mix approach reduces the investigation to the options, which highly
affects assembly line planning and puts less emphasis on the options that have less
impact on the planning. However, because of its stochastic nature, the drawback
of this technique includes overestimating or underestimating the task processing
times. This can lead to waste of resources or violation of the cycle time constraints,
respectively. Since the estimation of the joint precedence graph is highly dependent
on sales data, any inconsistencies in the provided data can lead to inefficient assembly
lines, which is a drawback to keep in mind. For high product variety, the option mix
approach is nevertheless a good alternative to the traditional model mix approach.
Although the presented work might be improved upon by finding a better solution
to this problem.

Another future recommendation for this work is to consider model sequencing after
the line balancing. Sequencing of the models requires a dispatching system that
decides, based on several objectives, which model should be produced first. It’s a
way to prioritize the customer orders while using the assembly line efficiently. It
is another critical problem that needs to be solved in order to make multi-model
production processes efficient.

Appendix

Figure A.1: Best Found Value of Cycle Time = 17.0 Time Units for 5 Workstations
with Task Distribution and Total Idle time of 0.021 and 10.0 Time Units respectively.

Figure A.2: Best Found Number of Workstations = 2 for Cycle Time = 38.0 Time
Units with Task Distribution and Total Idle time of 0.0 and 1.0 Time Units respec-
tively.

74

Figure A.3: These Objective Values are the Closest to the Median Values, show the
best compromised values for all Objectives.

Figure A.4: Best Found Value of Cycle Time = 25.0 Time Units for 15 Workstations
with Task Distribution and Total Idle time of 0.009 and 51.0 Time Units respectively.

75

Figure A.5: Best Found Number of Workstations = 2 for Cycle Time = 162.0
Time Units with Task Distribution and Total Idle time of 0.0 and 0.0 Time Units
respectively.

Figure A.6: Objective Values, Closest to the Median Values, shows the best compro-
mised values for all Objectives.

76

Figure A.7: Best Found Value of Cycle Time = 43.0 Time Units for 7 Workstations
with Task Distribution and Total Idle time of 0.08 and 90.0 Time Units respectively.

Figure A.8: Objective Values, Closest to the Median Values, shows the best compro-
mised values for all Objectives.

77

Figure A.9: Best Found Value of Cycle Time = 20.0 Time Units for 28 Workstations
with Task Distribution and Total Idle time of 0.054 and 359.0 Time Units respectively.

Figure A.10: Best Found Number of Workstations = 20 for Cycle Time = 58.0 Time
Units with Task Distribution and Total Idle time of 0.005 and 959.0 Time Units
respectively.

78

Figure A.11: Best Found Value for Total Idle Time = 259.0 Time Units for Cycle
Time = 58.0 Time Units, Number of Workstations = 23 with Task Distribution of
0.09.

Figure A.12: Best Found Value for Variance in Task Distribution = 0.027 Time Units
for Cycle Time = 46.0 Time Units, Number of Workstations = 37 with Total Idle
Time of 1501.0 Time Units.

79

Figure A.13: Objective Values, Closest to the Median Values, shows the best com-
promised values for all Objectives.

Figure A.14: Objective Values, Closest to the Median Values, shows the best com-
promised values for all Objectives.

80

Fi
gu

re
A
.1
5:

B
es

t
F

ou
n
d

V
al

u
e

of
C

y
cl

e
T

im
e

=
27

.0
T

im
e

U
n
it

s
fo

r
65

W
or

k
st

at
io

n
s

w
it

h
T

as
k

D
is

tr
ib

u
ti

on
an

d
T

ot
al

Id
le

ti
m

e
of

0.
00

9
an

d
25

6.
0

T
im

e
U

n
it

s
re

sp
ec

ti
ve

ly
.

81

Cycle Time No. of Machines Variance in Task Distribution Total Idle Time Corresponding Task Sequence

28 3 0.0114796 9 [1 2 4 3 5 6 7 8]

20 5 0.03125 25 [1 2 3 4 6 5 8 7]

38 2 0.0003463 1 [1 2 3 5 4 7 6 8]

28 3 0.0114796 9 [1 2 3 5 4 6 8 7]

26 4 0.0713757 29 [1 2 3 5 7 4 6 8]

22 4 0.0556129 13 [1 2 4 3 6 5 7 8]

38 2 0.0003463 1 [1 2 3 4 6 8 5 7]

28 3 0.0114796 9 [1 2 3 4 5 7 6 8]

38 2 0.0003463 1 [1 2 3 5 4 6 8 7]

Table A.1: Shows the Multi-Modal nature of the Multi-Objective Multi-Model As-
sembly Line Problem, the same Coloured Decision Variables Corresponds to the
Same Objective Values.

82

Fi
gu

re
A
.1
6:

S
m

ar
tP

h
on

e
P

re
ce

d
en

ce
G

ra
p
h

fo
r

al
l

P
os

si
b
le

O
p
ti

on
s

83

Fi
gu

re
A
.1
7:

S
m

ar
tP

h
on

e
M

o
d
el

1
P

re
ce

d
en

ce
G

ra
p
h

84

Fi
gu

re
A
.1
8:

S
m

ar
tP

h
on

e
M

o
d
el

2
P

re
ce

d
en

ce
G

ra
p
h

85

Fi
gu

re
A
.1
9:

S
m

ar
tP

h
on

e
M

o
d
el

3
P

re
ce

d
en

ce
G

ra
p
h

Bibliography

Ajith Abraham and Lakhmi Jain. Evolutionary multiobjective optimization. In
Evolutionary multiobjective optimization, pages 1–6. Springer, 2005. (cited on Page 12)

Kaveh Amouzgar. Multi-objective optimization using genetic algorithms, 2012. (cited

on Page 5, 7, 9, 10, 11, 12, 13, and 37)

Shwetank Avikal, Rajeev Jain, PK Mishra, and HC Yadav. A heuristic approach
for u-shaped assembly line balancing to improve labor productivity. Computers &
Industrial Engineering, 64(4):895–901, 2013. (cited on Page 20)

Ilker Baybars. A survey of exact algorithms for the simple assembly line balancing
problem. Management science, 32(8):909–932, 1986. (cited on Page 15, 16, 17, 18,

and 19)

J. Blank and K. Deb. pymoo: Multi-objective optimization in python. IEEE Access,
8:89497–89509, 2020. (cited on Page 39)

Julian Blank, Kalyanmoy Deb, and Proteek Chandan Roy. Investigating the nor-
malization procedure of nsga-iii. In International Conference on Evolutionary
Multi-Criterion Optimization, pages 229–240. Springer, 2019. (cited on Page 39)

Nils Boysen, Malte Fliedner, and Armin Scholl. Assembly line balancing: Joint
precedence graphs under high product variety. Iie Transactions, 41(3):183–193,
2009. (cited on Page 3, 23, 33, 35, and 36)

Nils Boysen, Philipp Schulze, and Armin Scholl. Assembly line balancing: What
happened in the last fifteen years? European Journal of Operational Research,
2021. (cited on Page 18)

RB Breginski, M Cleto, and JS Junior. Assembly line balancing using eight heuristics.
In 22nd International Conference on Production Research, 2013. (cited on Page 33)

Joseph Bukchin and Jacob Rubinovitz. A weighted approach for assembly line design
with station paralleling and equipment selection. IIE transactions, 35(1):73–85,
2003. (cited on Page 21)

Kuang-Hua Chang. Chapter 19 - multiobjective optimization and advanced topics.
In Kuang-Hua Chang, editor, e-Design, pages 1105–1173. Academic Press, Boston,
2015. ISBN 978-0-12-382038-9. doi: https://doi.org/10.1016/B978-0-12-382038-9
.00019-3. URL https://www.sciencedirect.com/science/article/pii/B97801238203
89000193. (cited on Page 7)

https://www.sciencedirect.com/science/article/pii/B9780123820389000193
https://www.sciencedirect.com/science/article/pii/B9780123820389000193

88 Bibliography

Carlos A Coello Coello, Gary B Lamont, David A Van Veldhuizen, et al. Evolutionary
algorithms for solving multi-objective problems, volume 5. Springer, 2007. (cited on

Page 12 and 13)

Kalyanmoy Deb. Multi-objective optimization using evolutionary algorithms. john
wiley& sons. Inc., New York, NY, 2001. (cited on Page 5, 6, 9, 10, 11, 12, and 13)

Kalyanmoy Deb. Multi-objective Optimization, pages 403–449. Springer US, Boston,
MA, 2014. ISBN 978-1-4614-6940-7. doi: 10.1007/978-1-4614-6940-7 15. URL
https://doi.org/10.1007/978-1-4614-6940-7 15. (cited on Page 7 and 8)

Kalyanmoy Deb and Tushar Goel. Multi-objective evolutionary algorithms for
engineering shape design. In Evolutionary optimization, pages 147–175. Springer,
2003. (cited on Page 8)

Kalyanmoy Deb and Himanshu Jain. An evolutionary many-objective optimization
algorithm using reference-point-based nondominated sorting approach, part i: solv-
ing problems with box constraints. IEEE transactions on evolutionary computation,
18(4):577–601, 2013. (cited on Page 38, 40, and 69)

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and
elitist multiobjective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary
computation, 6(2):182–197, 2002. (cited on Page 13, 37, and 38)

Erdal Erel and Subhash C Sarin. A survey of the assembly line balancing procedures.
Production Planning & Control, 9(5):414–434, 1998. (cited on Page 15 and 16)

Masood Fathi, Dalila Benedita Machado Martins Fontes, Matias Urenda Moris, and
Morteza Ghobakhloo. Assembly line balancing problem: A comparative evaluation
of heuristics and a computational assessment of objectives. Journal of Modelling
in Management, 2018. (cited on Page 31)

Daniel J Fonseca, Matthew Elam, Charles L Karr, and CL Guest. A fuzzy logic
approach to assembly line. Mathware & soft computing, 2005, vol. 12, núm. 1,
2005. (cited on Page 15)

Mitsuo Gen and Runwei Cheng. Genetic Algoritms for Control and Engineering
Design. John Wiley & Sons. Inc., 1997. (cited on Page 7)

Hadi Gökçen, Kürşad Ağpak, and Recep Benzer. Balancing of parallel assembly
lines. International Journal of Production Economics, 103(2):600–609, 2006. (cited

on Page 21)

W Grzechca and LR Foulds. The assembly line balancing problem with task splitting:
A case study. IFAC-PapersOnLine, 48(3):2002–2008, 2015. (cited on Page 19 and 25)

Waldemar Grzechca. Assembly Line: Theory and Practice. BoD–Books on Demand,
2011a. (cited on Page 1 and 2)

Waldemar Grzechca. Cycle time in assembly line balancing problem. In 2011 21st
International Conference on Systems Engineering, pages 171–174. IEEE, 2011b.
(cited on Page 25)

https://doi.org/10.1007/978-1-4614-6940-7_15

Bibliography 89

Allan L Gutjahr and George L Nemhauser. An algorithm for the line balancing
problem. Management science, 11(2):308–315, 1964. (cited on Page 2)

WB Halgeson and DP Birnie. Assembly line balancing using the ranked positional
weighting technique. Journal of Industrial Engineering, 12(6):394–398, 1961. (cited

on Page 16)

Randy L Haupt and Sue Ellen Haupt. Practical genetic algorithms. John Wiley &
Sons, 2004. (cited on Page 5)

N Ismail, GR Esmaeilian, M Hamedi, and S Sulaiman. Balancing of parallel assembly
lines with mixed-model product. In International Conference on Management and
Artificial Intelligence IPEDR, volume 6, pages 120–124, 2011. (cited on Page 21)

Mahrokh Javadi and Sanaz Mostaghim. Using neighborhood-based density measures
for multimodal multi-objective optimization. In International Conference on
Evolutionary Multi-Criterion Optimization, pages 335–345. Springer, 2021. (cited

on Page 9)

Edward PC Kao. A preference order dynamic program for stochastic assembly line
balancing. Management Science, 22(10):1097–1104, 1976. (cited on Page 16)

Talip Kellegöz. Balancing lexicographic multi-objective assembly lines with multi-
manned stations. Mathematical problems in Engineering, 2016, 2016. (cited on

Page 32)

Joshua D Knowles and David W Corne. Approximating the nondominated front
using the pareto archived evolution strategy. Evolutionary computation, 8(2):
149–172, 2000. (cited on Page 13)

Abdullah Konak, David W Coit, and Alice E Smith. Multi-objective optimization
using genetic algorithms: A tutorial. Reliability engineering & system safety, 91
(9):992–1007, 2006. (cited on Page 13)

Tae Ok Lee, Yeongho Kim, and Yeo Keun Kim. Two-sided assembly line balancing
to maximize work relatedness and slackness. Computers & Industrial Engineering,
40(3):273–292, 2001. (cited on Page 22)

JLC Macaskill. Production-line balances for mixed-model lines. Management Science,
19(4-part-1):423–434, 1972. (cited on Page 34)

Herbert Meyr. Supply chain planning in the german automotive industry. In Supply
Chain Planning, pages 343–365. Springer, 2009. (cited on Page 3)

Kaisa Miettinen and Jussi Hakanen. Why use interactive multi-objective optimization
in chemical process design? In MULTI-OBJECTIVE OPTIMIZATION: Techniques
and Application in Chemical Engineering, pages 157–197. World Scientific, 2017.
(cited on Page 6 and 7)

Kaisa Miettinen and Pekka Salminen. Decision-aid for discrete multiple criteria
decision making problems with imprecise data. European Journal of Operational
Research, 119(1):50–60, 1999. (cited on Page 6)

90 Bibliography

John Miltenburg. Balancing u-lines in a multiple u-line facility. European journal of
operational research, 109(1):1–23, 1998. (cited on Page 20)

John Miltenburg. U-shaped production lines: A review of theory and practice.
International Journal of Production Economics, 70(3):201–214, 2001. (cited on

Page 20)

Ashkan Mozdgir, Iraj Mahdavi, Iman Seyedi Badeleh, and Maghsud Solimanpur. Us-
ing the taguchi method to optimize the differential evolution algorithm parameters
for minimizing the workload smoothness index in simple assembly line balancing.
Mathematical and Computer Modelling, 57(1-2):137–151, 2013. (cited on Page 32)

Narasimha R Nagaiah and Christopher D Geiger. Application of evolutionary
algorithms to optimize cooling channels. International Journal for Simulation and
Multidisciplinary Design Optimization, 10:A4, 2019. (cited on Page 9)

Koichi Nakade and Rei Nishiwaki. Optimal allocation of heterogeneous workers in
a u-shaped production line. Computers & Industrial Engineering, 54(3):432–440,
2008. (cited on Page 20)

A Nourmohammadi and M Zandieh. Assembly line balancing by a new multi-
objective differential evolution algorithm based on topsis. International Journal of
Production Research, 49(10):2833–2855, 2011. (cited on Page 32)

Amir Nourmohammadi, Masood Fathi, and Amos HC Ng. Choosing efficient meta-
heuristics to solve the assembly line balancing problem: A landscape analysis
approach. Procedia CIRP, 81:1248–1253, 2019. (cited on Page 24)

Hongbo Ren, Yinlong Lu, Qiong Wu, Xiu Yang, and Aolin Zhou. Multi-objective op-
timization of a hybrid distributed energy system using nsga-ii algorithm. Frontiers
in Energy, 12(4):518–528, 2018. (cited on Page 38)

Ihsan Sabuncuoglu, Erdal Erel, and M Tanyer. Assembly line balancing using genetic
algorithms. Journal of intelligent manufacturing, 11(3):295–310, 2000. (cited on

Page 40)

Melvin E Salveson. The assembly line balancing problem. The Journal of Industrial
Engineering, pages 18–25, 1955. (cited on Page 16)

A Scholl. Data of assembly line balancing problems, schriften zur quantitativen
betriebswirtschaftslehre 16/93. Copyright of Applied Mechanics & Materials is
the property of Trans Tech Publications, Ltd and its content may not be copied
or emailed to multiple sites or posted to a listserv without the copyright holder’s
express written permission. However, users may print, download, or email articles
for individual use, 1993. (cited on Page 43)

Armin Scholl and Christian Becker. State-of-the-art exact and heuristic solution
procedures for simple assembly line balancing. European Journal of Operational
Research, 168(3):666–693, 2006. (cited on Page 16, 17, 22, 23, and 24)

Armin Scholl and Armin Scholl. Balancing and sequencing of assembly lines. Springer,
1999. (cited on Page 17)

Bibliography 91

Thomas Seidelmann, Jens Weise, and Sanaz Mostaghim. Meeting demands for mass
customization: A hybrid organic computing approach. In 2021 IEEE Symposium
Series on Computational Intelligence (SSCI), pages 1–8, 2021. doi: 10.1109/SSCI
50451.2021.9659946. (cited on Page 43)

RJ Sury. Aspects of assembly line balancing. International Journal of Production
Research, 9(4):501–512, 1971. (cited on Page 15)

Nick T Thomopoulos. Mixed model line balancing with smoothed station assignments.
Management science, 16(9):593–603, 1970. (cited on Page 33)

Mohammad Kamal Uddin and Jose Luis Martinez Lastra. Assembly line balancing
and sequencing. Assembly Line–Theory and Practice, pages 13–36, 2011. (cited on

Page 16, 43, 56, and 57)

Jannet I Van Zante-de Fokkert and Ton G de Kok. The mixed and multi model line
balancing problem: a comparison. European Journal of Operational Research, 100
(3):399–412, 1997. (cited on Page 34)

Grzechca Waldemar. Final results of assembly line balancing problem. Assembly
Line–Theory and Practice, 2011. (cited on Page 2, 15, 16, and 30)

Eckart Zitzler and Lothar Thiele. An evolutionary algorithm for multiobjective
optimization: The strength pareto approach. TIK-report, 43, 1998. (cited on Page 13)

Eckart Zitzler, Marco Laumanns, and Lothar Thiele. Spea2: Improving the strength
pareto evolutionary algorithm. TIK-report, 103, 2001. (cited on Page 13)

I herewith assure that I wrote the present thesis independently, that the thesis has
not been partially or fully submitted as graded academic work and that I have used
no other means than the ones indicated. I have indicated all parts of the work in
which sources are used according to their wording or to their meaning.

Magdeburg, 5th October 2022

	Contents
	List of Figures
	List of Tables
	List of Acronyms
	1 Introduction
	2 Background
	2.1 Optimization
	2.2 Multi-Criteria Decision Making
	2.3 Multi-Objective Optimization
	2.4 Multi-Modal Problems
	2.5 Multi-Objective Optimization Terminologies
	2.6 Multi-Objective Optimization Techniques
	2.7 Evolutionary Algorithms
	2.8 Multi-Objective Evolutionary Algorithms
	2.9 Constraint Handling

	3 Literature Review
	3.1 Assembly Line
	3.2 Assembly Line Balancing Problem
	3.3 Classification of Assembly Line Balancing Problems
	3.3.1 Classification According to Scholl and Becker
	3.3.2 Classification According to Baybars

	3.4 Assembly Line Layouts
	3.5 Precedence Graph
	3.6 Joint Precedence Graph
	3.7 State-of-the-Art Methods
	3.7.1 Exact
	3.7.2 Heuristic Approaches
	3.7.3 Meta-Heuristics Approaches

	4 Problem Formulation
	4.1 Important Terminologies in ALBP
	4.2 Presumptions
	4.3 The Decision Variables
	4.4 Constraints
	4.5 Precedence Constraints
	4.6 Station Restrictions
	4.7 Objective Functions

	5 Proposed Methodology
	5.1 Option-based Joint Precedence Graph
	5.2 Multi-Objective Evolutionary Algorithms
	5.2.1 NSGA-II
	5.2.2 NSGA-III
	5.2.3 Components of the Algorithms

	6 Results and Analysis
	6.1 The Bowman Benchmark Problem
	6.1.1 Results for the Multi-Objectives Case
	6.1.2 Results for the Many-Objectives Case

	6.2 The Buxey Benchmark Problem
	6.2.1 Results for the Multi-Objectives Case
	6.2.2 Results for the Many-Objectives Case

	6.3 The WeeMag Benchmark Problem
	6.3.1 Results for Multi-Objectives Case
	6.3.2 Results for Many-Objectives Case

	6.4 The Mixed-Model Camera Manufacturing Problem
	6.4.1 Results for the Multi-Objectives Case
	6.4.2 Results for the Many-Objectives Case

	6.5 The Mixed-Model SmartPhone Problem
	6.5.1 Results for Multi-Objectives Case
	6.5.2 Results for the Many-Objectives Case
	6.5.3 Overall Results

	7 Conclusion
	Appendix
	Bibliography

