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Abstract

Nowadays, swarm robotics grows importance because of their wide application field,
for example: Internet of things or search scenarios such as radioactive source search
or missing person search. In swarm robotics, teammate tracking is indispensable to
ensure an intelligent and efficient problem-solving in swarm behaviour.

In this thesis, a new approach for teammate tracking in swarm robotics is presented.
To maximize the confidence in the information gained by the sensors of the robots,
the Bayes-Hempel Method for sensor fusion is introduced. The goal of this thesis is
to experimentally validate the approach and to show the advantages compared to
other state-of-the-art methods. This method maps sensor information into certainty
grids, which are then fused using the Bayes theorem. With one resulting certainty
grid per teammate, a probabilistic estimation on the position of the teammate is
given. To gain information in different scenarios, an Ultra-Wideband sensor, which
is reliable without line of sight, and a LIDAR sensor, which is very accurate in line
of sight, are used.

For evaluation, a relative probability analysis and an absolute error calculation are
performed. Those show, that the teammate can be tracked even when an obstacle is
between both robots. The accuracy can compete with other state-of-the-art methods
like the Kalman Filter. Furthermore, the method shows a high robustness and the
possibility to adapt to different scenarios by manually tuning the parameters. Due
to the approach using a prior mapping to certainty grids, a fusion of sensors with
different modalities is possible. Thus, the method is applicable to many scenarios
using multiple sensors. To improve the usability an implementation of an adaptive
parameter behaviour would be possible. By archiving the certainty grids over
multiple time steps, an estimation of movement is additionally possible. Therefore,
the presented approach builds a new base for measurement processing in swarm
robotics.
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1. Introduction

In the last years, robotic swarms made of many autonomous operating individuals
have seen increased applications. The knowledge about the environment and the
location of other swarm members is crucial for most applications like the internet of
things (IoT)[1], flying drone fireworks or robots utilized in search scenarios[2]. With
this knowledge, collisions can be avoided and a correct distribution for best results
can be maintained[3]. To also maintain self-sufficiency of swarm individuals, each
one has to gather information about the environment themselves[4]. Therefore, it
does not rely on an absolute localization like the Global Positioning System(GPS),
and is more universally applicable. Here, sensor fusion plays an important role to
get maximum information with high quality out of the environment, utilizing the
limited possibilities of each swarm member. The technique combines single sensor
information into a more informative result[5]. It finds wide application in many areas
of robotics such as object recognition, environment mapping, and localization and is
therefore regarded as the most appropriate method to track objects and determine
their locations[6]. One specific application of this technique is teammate tracking
for robotic swarms, which is covered in this work. Teammate tracking is especially
useful to locate certain members of the swarm. With this information, high-level
behaviours such as role decisions and directed interactions are possible[7].

In this thesis, we want to fuse different sensor information to determine the location
of teammates. First, we want to map the findings of each sensor into modified
certainty grids of the environment as a relative localization. These grids contain
probability values representing the certainty on the location of teammates in each
cell. After the creation of these grids, a sensor fusion algorithm utilizing the Bayes
theorem is designed to combine them. Thereby, a resulting certainty grid of the
environment containing all sensor information about the teammate is yielded.

To analyse and evaluate this result, the following research questions are answered.

Research Question 1 (RQ1):
How can the quality of teammate tracking be measured?
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Research Question 2 (RQ2):
How big is the quantitative advantage or the improvement compared to the state of
the art?

Research Question 3 (RQ3):
How big is the influence of parameter changes?

Research Question 4 (RQ4):
How high is the robustness against different kinds of faults?

The first question aims to design a suited metric for evaluating the performance of
the sensor fusion approach. This is related to all further questions and enables to
give well-founded concrete statements as answers. The second question is concerned
with the overall performance of the fusion approach in relation to other state-of-the-
art fusion techniques. Thereby, the designed evaluation metric is used to compare
measurable and expressive results. The third and fourth question relate to properties
of the designed approach. Here, the influence of parameter changes allows statements
to be made about the adaptability of the approach. And the robustness against
different kind of faults investigates about disturbances and the influence of those.
Hence, the third and fourth question allow for conclusions to be drawn about the
limitations and therefore possible applications of this sensor fusion approach by the
user.

Structure of Work

First, in Chapter 2, the background needed as a foundation to this work is given and
explained. Second, in Chapter 3, the related work is presented. Different sensors,
which are able to track a teammate, are described and compared regarding their
suitability for the use case. Afterwards, other sensor fusion techniques are described
to give an overview on the state of the art. Third, in Chapter 4, the previously
established knowledge is used to explain the procedure of tackling the stated problem
and the design of a suited approach, the Bayes-Hempel method. Fourth, in Chapter
5, the environmental setup used to conduct experiments in is described, a suitable
evaluation metric is introduced and ultimately the conducted experiments with the
goal to answer the research questions are described and evaluated. Lastly, in Chapter
6, the laid out work is summarized and concluded. Additionally, an outlook on
possible future work is given.



2. Background

In this chapter, the base of this work is clarified. In the beginning, the properties of a
robotic swarm are described. Afterwards, a certainty grid as a mean of representation
is introduced. Then, Sensor Fusion is described regarding definitions, benefits, levels,
and types, followed by the basics of the Bayes theorem and the application in sensor
fusion. Finally, it is described, how the requirements for the application of the Bayes
theorem are determined.

2.1 Robotic Swarm Model
A swarm in nature consists of two or more independent individuals with a collective
behaviour. In a robot environment, which is the main application field of this work,
the individuals are single robots. And further, the robotic swarm applies swarm
intelligence as a collective behaviour of decentralized, self-organized systems. Dorigo
et al.[8][9] defined the emerging topic of swarm robotics as ’the study of how collec-
tively intelligent behaviour can emerge from local interactions of a large number of
relatively simple physically embodied agents’.
In a moving robotic swarm, the robot’s position and movement mainly rely on every
individual of the swarm and the robot’s surroundings. Therefore, an individual must
keep track of its local environment and especially other members of the swarm to
avoid collisions and to calculate its next position and movement. Hence, some kind
of tracking or localization between the swarm individuals is mandatory. This can be
realized by using the earlier mentioned local interactions and can result in a collision
free movement planning, navigation or other collective and intelligent behaviour of
the swarm.
In this work, every robot is seen as an agent with specific sensors and actuators[10].
Here, the actuators of every robot enable them to move around in the given envi-
ronment and the applied sensors, execute the local interactions by detecting the
environment and especially changes in it. So in an application with multiple robots,
the change in the environment mainly consists of the individual moving itself or other
members of the swarm move around it. Therefore, the velocity of the environmental
change is equal to the movement speed of a robot for most parts. Hence, a sufficient
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sensor sampling rate according to the maximum movement speed a robot can achieve
is needed. It also follows, that data sizes and computation time need to be adjusted
according to the application and its speed of environmental change.

2.2 Certainty Grid
The information on the likelihood of residence of teammates need to be stored,
transmitted and worked on by every component. Therefore, a suitable representation
needs to be found, that combines the ability to easily locate a teammate inside the
environment with a likelihood estimation and a lightweight storage solution. This
thesis utilizes a certainty grid representation which is used and labelled by Moravec
et al.[11] to be “a powerful and efficient unifying solution for sensor fusion, motion
planning, landmark identification and, and many other central problems”. Here, the
first mentioned application is of main interest for this thesis.
A certainty grid used by Moravec is shown in Figure 2.1. Here, black parts represent

Figure 2.1: Certainty Grid used by Moravec - Occupied cells are marked by black squares, empty
areas by dots fading to white representing certainty, and unknown territory by plus signs

occupied areas, plus signs are unknown areas and dots fading to white represent
empty areas with certain likelihood. The lines are not part of the certainty grid
itself, and simply show the outer bounds of objects in the environment for better
visualization purposes.
Overall, a certainty grid is a 2D map the size of the given environment divided in
cells. It maps the findings of obstacles all over the environment inside this certainty
grid. Every cell stores the likelihood of residence of objects in this cell area. Cells
with unknown likelihood get a fixed probability assigned, which represents a small
likelihood of residence. Therefore, the grid is a discrete sampling of a continuous
probability function. Hence, an initial uniform distribution of values in the grid is
possible to achieve as well, which is especially useful to model an unknown starting
state. Here, the sample size, and so to say the size of every cell, is determined by
the application and should incorporate the sampling interval, the maximum velocity
of change in the environment, and the teammate size to yield significant results.
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With larger cell sizes, the grid gets more prone to sampling errors due to continuous
information getting mapped onto discrete grid cells. To evade such errors and still
save storage space, it is possible to have multiple resolutions in one grid. The less
important parts can be mapped in a lower resolution than the important parts, so
changes in environment can be detected when needed and the consumed storage
space is still low. Additionally, further investigations are possible using interpolation
to reconstruct the original continuous input.

2.3 Sensor/Data Fusion
2.3.1 Definitions
The fusion of information and data, so-called information fusion, is the key topic of
this work. There are several definitions of fusions.

Information Fusion by Elmenreich[5]
Information fusion encompasses theory, techniques, and tools conceived and
employed for exploiting the synergy in the information acquired from multiple
sources (sensor, databases, information gathered by human, etc.) such that the
resulting decision or action is in some sense better (qualitatively or quantita-
tively, in terms of accuracy, robustness, etc.) than would be possible if any of
these sources were used individually without such synergy exploitation.

Data Fusion by Joint Directors of Laboratories workshop[12]
Data fusion is a multi-level procedure dealing with the association, correlation,
integration of data and information from single and multiple sources to attain
distinguished position, determine estimates and complete timely assessments
of situations, threats, and their significance.

The main parts in both definitions include the existence of multiple sources of
information and the processing of these sources to achieve new or better information,
which would not be possible without the fusion process.
If the fusion happens in a robotic environment, sensor information are gathered
as sources of information. This is a special case called sensor fusion with different
definitions as well.

Sensor Fusion by Nagla et al.[13] and Castanedo[14]
Sensor fusion is the cooperative use of information provided by multiple sensors
to aid in performing a function.

Sensor Fusion by Elmenreich[5]
Sensor fusion is a subset of information fusion, with sensor fusion being the
combination of sensory data or data derived from sensory data such that the
resulting information is in some sense better than what would be possible when
these sources were used individually.

Sensor Fusion by Alatise and Hancke[6]
Sensor fusion is the integration of information from multiple sources to improve
accuracy and quality content, also with the aim to reduce cost.
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Especially, improving accuracy and simultaneously reducing cost is a desirable goal.
Therefore, sensor fusion is well suited to expand the possibilities in a limited robotic
environment due to sensor errors, robot size and component costs.

2.3.2 Benefits

As Alatise and Hancke[6] stated, sensor fusion has some significant advantages over
the use of single sensor information. First, by combining the data gathered by
multiple sensors, an increase in accuracy and reliability can be seen. This is caused
by an overall reduction in uncertainty because each used sensor cancels out the errors
of the other ones. So to say, the integration of more than one sensor leads to the
complementation of the inadequacy of one sensor with another. Second, the usage
of multiple sensors leads to an extended spatial and temporal coverage. Therefore,
additional information can be derived from already existing sensor data. The stated
advantages lead to an improved quality of information of fusion results, which can
also lead to increased confidence in this information. Furthermore, by using multiple
simple sensors instead of a single complex one, it is sometimes possible to reduce
complexity and overall cost by simultaneously maintaining a feasible quality of
results.

2.3.3 Fusion Level

There are different types of sensor fusion levels. The chosen architecture defines the
hierarchical location, where the fusion happens. Elmenreich[5] differentiates between
low-level, intermediate-level and high-level fusion. Kam et al.[15] describe the levels
as follows. The low-level fusion is the direct integration of sensory data, resulting in
parameter and state estimates used by planning and motion execution modules to
generate command and control signals. Therefore, it is the level closest to the sensors.
Contradictory to this, high-level fusion is the indirect integration of sensory data in
hierarchical architectures, through command arbitration and integration of control
signals, that are suggested by different modules. This means first the sensor data
gets highly processed and afterwards the results get fused together. Lastly, as a way
to combine both above-mentioned levels of fusion, intermediate-level or hybrid fusion
is stated. Here, an architecture is created, that synthesizes command and control
signals directly from sensory input, but does not make use of explicit construction
of environmental models. Hence, the intermediate-level fusion combines the sensor
data with light abstraction into the result.
As the low-level fusion combines raw data, the complexity and computation time
is kept low. With increasing fusion level, the complexity and computation time
increases, but also the extendability to further input sources as well as the abstraction
of the result. Therefore, by choosing an appropriate fusion level, the best suited result
for further processing in the desired use case is selected. Hereby, it is notable that
these fusion levels are more theoretical, as many sensors already combine different
simpler sensors to yield a better or more specific result. Hence, these sensors already
yield results on an intermediate-level and therefore the corresponding fusion is also
on intermediate-level.
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2.3.4 Fusion Types

Additionally, there are several types of sensor fusion, but in contradiction to the
beforehand described places of fusion, the different types are not mutually exclusive
for the fusion. Durrant-Whyte et al.[16] distinguishes between 3 different types
of how sensor data can be combined for fusion: competitive, complementary and
cooperative.

Figure 2.2: Competitive, complementary, and cooperative fusion[5]

These types and their sensor interactions can be seen in Figure 2.2. In a comple-
mentary fusion approach, each sensor does not directly depend on each other, but
instead can be combined to give a wider look into the environment. The combination
of these measurements resolves the incompleteness of the measurement data and
produce a more complete image of the property under observation. This type leads
to an improved completeness of the resulting data. Sensors S2 and S3 in Figure 2.2
get combined using this complementary approach.

Sensors S1 and S2 use the competitive approach. Here, each sensor produces inde-
pendent measurements of the same property, which are redundant[17] but increase
the accuracy as well as the robustness in case of measurement errors. This leads to
more reliable and accurate result data. Furthermore, it is possible to combine data
of different sensors and also different data from the same sensor source[18]. This
means only 1 sensor is needed, which can provide multiple measurements, and some
previous described advantages of sensor fusion are applicable.

Lastly, the cooperative approach uses the information made available by multiple
sensors to originate data, that would not be obtainable from a single sensor. Stereo-
scopic vision is one example of this type. Here, two-dimensional images from two
cameras at slightly different viewpoints get combined into a three-dimensional image
of the observed scene. In contrast to the two other types, the cooperative type usually
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decreases accuracy and reliability, because the result is sensitive to inaccuracies in all
sensor measurements[19], but can produce emerging views on the observed property.
Sensors S4 and S5 represent the cooperative type.

2.4 Bayes’ Theorem and Use in Sensor Fusion
The sensor fusion worked on in this paper utilizes the Bayes’ Theorem to combine
multiple sensor information into a final result. The Bayes’ Theorem describes the
probability of an event, based on prior knowledge of conditions that might be related
to the event[20].

p(X |Y ) = p(Y |X) · p(X)

p(Y )
(2.1)

Therefore, a suitable formula needs to be derived from the original Bayes formula
shown in Equation 2.1, which is able to fuse multiple prior conditions into one resulting
event, hereby paying attention to complexity and following the computational cost
for a robotic environment. But first, some basic formulas need to be established,
which can then be further used. To begin with, the conditional probability shown in
Equation 2.2 needs to be known to be able to transform the numerator of the Bayes’
Theorem.

p(X |Y ) = p(X ∩Y )
p(Y )

(2.2)

The conditional probability is defined as the probability of an event occurring,
given that another event has already occurred[21]. The joint distributions inside
this equation need to be further decomposed by making use of the chain rule of
probabilities shown in Equation 2.3.

p(Xn ∩ ...∩X1) = p(Xn|Xn−1 ∩ ...∩X1) · p(Xn−1 ∩ ...∩X1) (2.3)

The chain rule permits the calculation of any member of a joint distribution of a
set of random variables using only conditional probabilities[22], which were defined
earlier. Additionally, the law of total probability shown in Equation 2.4 is required
to transform the equation.

p(X) = p(X |Y ) · p(Y )+ p(X |¬Y ) · p(¬Y ) (2.4)

This law relates marginal probabilities to conditional probabilities. Combined with
the definition of a complementary probability event shown in Equation 2.5, the
transformation with the law of total probability can be further transformed.

p(X)+ p(¬X) = 1 (2.5)

With the help of these equations, it is possible to derive a suitable formula for the
fusion, which only contains known or obtainable and simple inputs. A full derivation
is described in Chapter 4.

To apply these equations on continuous sensor measurements, the measurements are
taken at concrete time steps. Therefore, they are discretized, and an event here is a
sensor data at a certain time step.
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2.5 Stochastic Independence
In this work, the use of a Bayesian fusion approach implies the independence of
probability values from different sources, so-called stochastic independence. For an
approach on this independence, the following equation must be valid.

for all independent probabilities applies: P(
⋂
j∈J

A j) = ∏
j∈J

P(A j) (2.6)

This should apply to the use case, and it may apply for conditional independence,
because 2 sensors are independent if the result is known as shown earlier in Equation
4.11. For using the equation of independence, it is necessary to measure all parts and
compare them. But in the case presented here, it is not possible to directly measure
the probability of the intersection between the events. Hence, another approach to
determine the independence is needed. Here, a two-step test is constructed. First, the
input events are tested for linear independence by checking the covariance correlation
between them[23]. If the covariance value is 0, then the sources under consideration
are linear independent. The higher the covariance gets, the more linear dependent
they are. Second, a test for joint or multivariate normal distribution is performed.
The measurements of each event get examined whether they differ from such a joint
normal distribution. So the null hypothesis, that the samples comes from a joint
normal distribution, is tested. This means instead of testing for ordinary normal
distribution of each input by utilizing the omnibus test combining skew and kurtosis
by D’Agostino et al.[24, 25], the multivariate normal distribution is tested between
the inputs with the help of the Henze-Zirkler test[26]. The resulting pValue, which
is a 2-sided chi squared probability for the hypothesis test, provides information
about the rejection or acceptance of the hypothesis. A threshold level α is chosen,
typically 0.05, and the pValue is compared against it. If the pValue lies above the
threshold, the null hypothesis can not be rejected and the measurements are likely
to come from a joint normal distribution, else the null hypothesis is rejected, and
the measurements are not likely to originate from a joint normal distribution. In
case both test parts provide positive results for linear independence and multivariate
normal distribution origins, the events can be treated as stochastic independent[27].
In a robotic use case, however, a naive Bayes approach assuming the independence
between input sources is beneficial[28]. Here, the independence may be violated
anyway by mutual localization errors and sensor faults, as well as communication
errors. Therefore, the assumption of stochastic independence can be neglected for a
robotic environment and must be evaluated for every use case individually.





3. Related Work

In this chapter, first, different sensors are described. Those sensors include the ones
used in this work. Second, other approaches on sensor fusion are presented and
evaluated in terms of usability.

3.1 Tracking Sensors
The following section will take a look at different sensors and their properties, whose
results can be used for sensor fusion. Here, sensors, that are pre-installed on the used
robot, as well as other sensors will be compared in terms of accuracy, robustness,
measurement frequency and price, previously done for some sensors by Hempel et
al.[29]. This leads to a comparison about the feasibility of these sensors in the fusion
use case.

3.1.1 Ranging based on Signal Strength

A property of radio waves, which can be used for ranging, is signal strength. As
radio waves travel, the signal strength received at a receiving antenna gets smaller
due to the signal attenuation rate[30]. So, the further the source of the signal is away,
the weaker the signal gets. This property is calculable and can be used to build a
ranging based on Received Signal Strength Indication (RSSI)[31].
Bluetooth, WLAN and RFID [32, 33, 34, 35] are technologies, which enable RSSI-
based ranging, so already existing technologies can be reused RSSI-transceivers lie
within an affordable price range of under 50 dollar [36], are small and hence easy to
integrate in applications.
However, there are several problems with RSSI-based ranging. The mentioned signal
attenuation rate is the rate α at which the signal strength decreases over distance:

SignalStrength ∝ Distanceα .

As a rule of thumb, if α = 2 then signal strength drops by 3 decibel every time
distance doubles. This sublinear attenuation rate means, that the difference in signal
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strength between 1 metre and 2 metres is similar to the difference between 10 metres
and 20 metres. A constant level of noise can therefore result in an ever-increasing
error, when signal strength is used to estimate distance. As shown in Figure 3.1,
changes in signal strength due to distance become small relative to noise, even if the
level of noise remains the same over distance [37].

Figure 3.1: RSSI - Error increase over distance [37]

Additionally, there are severe multipath effects by radio wave reflections from walls
and obstacles during indoor use. Furthermore, through the build characteristics of
transceivers, the antennas never propagate radio waves with equal signal strength in
every direction from the source [38].
The transceiver will be mounted on robots, which can block radio signals depending
on the used materials[39]. Based on the orientation of the robot and the transceiver,
the signal strength varies a lot.
The above-mentioned characteristics lead to a small usable range with bad accuracy
and robustness.

3.1.2 Ranging based on Phase Differences
Another property of radio signals, that can be utilized for ranging, is phase shift.
By sending out radio signals of different frequencies, the reflected signals from the tar-
get can be compared with the sent ones. Between these signals, phase differences can
be observed. A resulting distance can be computed out of these phase differences [40].

The property of phase shift can be used to get high accurate result values, as well as
reasonable ranging distances. An implementation of ranging with phase differences
by Qiu [41] yields values shown in Figure 3.2.

With this implementation, a mean error of 10 to 20 centimetres can be achieved.
The range measurements were repeated several times for different tag angles. Here,
range measurements show a tag angle insensitivity [41].
This is especially useful for use with mobile robots.

By using radio signals to measure the phase shift, a high update frequency is given.
Also, small and affordable radio frequency transceivers [36] can be used, which enable
an easy integration.



3.1. Tracking Sensors 13

Figure 3.2: Yielded values with phase difference ranging [41]

However, ranging inaccuracy can be caused by multipath effects, frequency interfer-
ences in the environment or variations over temperature [41].

3.1.3 Ultra Wideband Time of Flight
A distance can be measured by calculating the time of flight of radio signals between
a sender and a receiver. Because bandwidths over 500 MHz are used to communicate
in, it is called ultra-wideband.
Here, time stamped messages are used to communicate between sender and receiver.
With these time stamps a time of flight, hence an adequate distance, can be computed
by multiplication with the speed of light as shown in Equation 3.1. Here, d is the
resulting distance, Tprop is the time of flight and cair is the speed of light in the
medium air. The speed of light in air equals 299700 kilometres per second [42].

d = cair · Tprop (3.1)

Michler et al. [43] states, that in reflectionless environments, as well as in typical
multipath environments, an error deviation better than three centimetres and a mean
error better than three millimetres can be reached.
In free space scenarios, ranges of up to 280 meters could be achieved while still
keeping the system’s accuracy at a high level.
Influential here is the use of ultra-wideband, because a larger bandwidth will increase
the robustness against frequency interferers and multipath propagation [43].
Experiments by Cardinali et al. [44] support Michler’s statements as their results
showed, that the presence of multipath effects strongly affects ranging accuracy but
favours a larger bandwidth [44].

By using radio signals to measure the phase shift, a high update frequency can be
achieved, which enables a steady and continuous measurement input. The DWM1000
modules are small and affordable radio frequency transceivers [45], which enable an
easy integration.

3.1.4 Optical TOF LIDAR Sensor
The time of flight light detection and ranging technology utilizes light to yield
ranges to objects and is used for mapping and obstacle avoidance in many of today’s
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applications. It is a laser scanner capable of sensing 360 degrees around itself by
having a laser mounted on a rotating base. By measuring the time Tround between
the sending of the laser beam and the arrival of the reflected light of an obstacle, a
distance d can be computed as shown in Equation 3.2.

d = cair · Tround

2
(3.2)

The used speed of light in air cair equals 299700 kilometres per second [42]. Therefore,
the update frequency can be high, which supports stable and continuous measurement
results even of fast moving objects and is only limited by the rotation speed of the
base.
Raj et al.[46] states, that the time of flight LIDAR is physically limited in range
to about 100 metres, because the detector is not able to sense the reflected light
above this range with a typical sensitivity. But according to the application and the
object size, a much shorter range suffices for object detection. Nowadays, especially
with lower detection range, the size, weight, and the price are decreasing to suitable
units for use within a mobile robotic application[46]. LIDAR specifications[47] of the
HLS-LFCD2 show highly accurate distance values yielded by those optical systems,
with deviations of up to 5% on accuracy and respectively 3.5% on precision on
maximum range.
Drawbacks while using an optical LIDAR system, is the former mentioned limited
range and the decrease in accuracy with increasing range. Further, a necessary
unobstructed line of sight on the object is required to range to it. Though, with
typical light sensitivity, the brightness of the environment should not be a limiting
factor and the ranging is not susceptible to other noise.

3.1.5 Sonar Sensors
Other ranging approaches, like Cricket and Active Bat [48], use sound to calculate
a distance. By measuring the time between the sent sound signal and the related
reflection of that signal (echo) a distance can be computed with Equation 3.3, where
vsound is the velocity of sound and Tround is the measured round trip time [49].

Distance = vsound · Tround

2
(3.3)

Sound signals propagate much slower than radio signals or light. This enables an
easier measurement of the time of flight, but also limits the update frequency of
distance values [50]. Especially for ranging on longer distances or when multiple
robots want to range to each other, the slower propagation time sets an upper limit
to the performance. To calculate distances between a swarm of 5 robots, the upper
boundary of the update frequency is 5 Hz [51]. So the performance on fast moving
robots is drastically limited.

The ranging accuracy in this approach is prone to decrease due to changes in
temperature, air humidity and atmospheric pressure, because they interfere with the
physical properties of sound propagation.

Ultrasonic range finders are purchasable at an affordable price of under 50$ [52].
They are small and because of that easy to integrate in a variety of applications.
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Ultrasonic ranging is typically used for obstacle detection, instead of ranging, in
submarines as well as in automotive applications or to control liquid levels in industrial
tanks [53].

3.1.6 Comparison

As also stated by Hempel et al.[29] ultra-wideband time of flight achieves the best
results in overall comparison, closely followed by optical LIDAR ranging.
A ranging based on signal strength will yield less useful results in terms of accuracy
and robustness, and is not a feasible approach for the use with mobile robots.
Furthermore, because of the characteristics, the use of ranging based on phase differ-
ences is not feasible in an area with many obstacles or with a crowded frequency band.
If that is not the case, this approach is only slightly inferior to ultra-wideband time
of flight in terms of accuracy and maximal distance. Therefore, it is not universally
suited for use in any environment, but it can be used in some cases.
Sonar can be used for single distance measurements, but for using it with multiple
robots the update frequency limitations, due to a slower propagation velocity, are too
severe for this approach to be practicable. Hence, in a teammate tracking situation,
a bare minimum of 2 robots will be active and moving at a time and so the ultrasonic
approach is not suited.
Ultra-wideband time of flight ranging is an accurate and robust approach, especially
for high distances and obstacle rich environments. Further, optical LIDAR ranging
with a 360 degree field of view yields even more accurate results in line of sight
scenarios and is less susceptible to environmental noise and so the usage in areas
with high external influences is possible. Both ultra-wideband time of flight and
LIDAR ranging use the fastest propagation speeds available and are therefore suited
for the use with mobile objects. Thus, it is most feasible for teammate tracking in a
dynamic environment to combine the accuracy of LIDAR in line of sight scenarios
and ultra-wideband time of flight in non line of sight scenarios.
Therefore, the DWM1000 ultra-wideband ranging modules, like the ones used by
Michler et al.[43], were integrated alongside LIDAR HLS-LFCD2 modules[47] for a
combining sensor fusion.
Additionally, each used DWM1000 module can differentiate between the modules it
ranges to by sending a unique ID. Hence, it is possible to identify the range value
and map it to the related teammate, which specifically enables our used approach to
yield sensor fusion results for each tracked teammate.

This fusion approach using the above described sensors is further analysed over the
course of this thesis.

3.2 Fusion Approaches
Following, after a sensor comparison was given, some state-of-the-art fusion ap-
proaches get described and advantages as well as disadvantages of these approaches
get disclosed. Afterwards, these approaches get set in relation to the used method
for this thesis.
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3.2.1 Kalman Filtering
A common and widely used approach for the fusion of data is Kalman filtering
developed by Kalman and Bucy[54][55]. It depends on the Markov assumption of
state of random variables in a stochastic process, stating that the current state is
only dependent on the past state. Therefore, past and future states are not correlated
if the current state is known[56]. It uses a mathematical model for filtering signals
using measurements with respectable amount of statistical and systematic errors,
except for unknown systematic ones, which can not generally be handled. Here,
the data from successive time intervals get fused, providing a maximum likelihood
estimate of the parameters. Possible multisensory scenarios can be mapped to an
internal state vector, alongside variables needed to suffice the Markov assumption[56],
as long as there are only linear dependencies between inputs and system states[57].
The filter uses a discrete-time algorithm to remove noise from sensor signals in order
to produce fused data. The basic Kalman Filter can be described by the following
equations. Equation 3.4 describes the dynamic of the system.

xk = F · xk−1 +B ·uk +w (3.4)

Hereby, xk−1 represents the system state at time k-1, F is the state transition matrix,
uk is the input to the system at time k, B relates the input to the system state at
time k xk and w represents the system noise, modelled as white noise ∼ N(0,Q) with
the covariance matrix as Q. Equation 3.5 describes the noisy observations of the
system.

zk = H · xk + v (3.5)

With zk being the sensor observations at time k, the matrix H relates the measure-
ments to the internal state, and v is the measurement noise, also modelled as white
noise ∼ N(0,R) with the covariance matrix R.
Then, the Kalman Filter predicts a state estimate utilizing Equation 3.6.

x̂k|k−1 = F · xk−1|k−1 +B ·uk (3.6)

Further, the innovation yk given by the observations at time k and the prediction are
calculated as shown in Equation 3.7.

yk = zk +H · x̂k|k−1 (3.7)

Afterwards, by additionally incorporating the prediction of the estimate covariance
P̂k|k−1 and the innovation of the covariance Sk, the optimal Kalman gain Kk can be
calculated with Equation 3.8.

Kk = P̂k|k−1 ·HT ·S−1 (3.8)

Finally, the updated state estimate can be calculated with Equation 3.9.

xk|k = x̂k|k−1 +Kk · yk (3.9)

In cases where the model matches the real system, only white noise exists and the
covariances of the noise are known exactly, the linear Kalman filer is proven to be
optimal[58].
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For initialization at start-up, a state estimate x0 is needed as well as an estimate of the
covariance matrices. The covariance estimate can be inaccurate, due to subsequent
application of the filter, that will let the covariance estimate approach its exact value.
Each iteration of the Kalman filter takes the same computational effort, therefore it
is well-suited for real-time applications.

Besides the wide usage of the Kalman filter, disadvantages can still be found and
need to be considered for every application individually[5]. For applications other
than ones with linear systems, variants of the Kalman filter need to be used in
order to achieve satisfying results. For these non-linear applications, the Extended
Kalman Filter(EKF) needs to be used, which utilizes non-linear stochastic difference
equations for the system model[59]. Other applications with unknown or volatile
statistical parameters over time need variants of the Kalman filter, that also have
to estimate the statistical parameters. Further disadvantages can be found in the
used evaluation criteria. The Kalman filter approach minimizes the error using a
least mean square approach, but depending on the application, other criteria would
perform better. So for every application, suited criteria need to be found and used.
Additionally, regarding the implementation in embedded systems, the computational
effort can be disadvantageous. Kalman filtering requires matrix multiplication and
inversion, which can lead to a high computational cost. Therefore, dedicated vector
processing units or, if not available, efficient implementations of matrix operations
are needed to achieve adequate performance in embedded systems. Furthermore, as
Thrun et al.[56] stated, the combination of multimodal sensors is hard to achieve
and can render the result useless. And moreover, spatial relations and especially
shifts in it, are hard to model inside the state vector and therefore hard to achieve.
In addition to this, an unknown starting state with a uniform distribution of no
knowledge is hard to model. Therefore, another fusion approach was introduced with
this thesis.

Though, the approach is used in many scenarios to combine multiple unimodal
sensors and inputs. The Extended Kalman Filter in a distributed form was used by
Karol et al.[60]. Here, multiple robots with multiple sensors track an object from
multiple points of view. In this scenario, a mean translation error from the real
position of the tracked object of 0.05 metres with a standard deviation of 0.01 metres
was yielded.
Corrales et al.[61] utilized the sensor fusion with Kalman to fuse inertial motion
capture data and ultra-wideband localization data. A human was successfully
localized in a robotic workspace environment with an overall translation error of 0.14
metres.

3.2.2 Reliable Abstract Sensors
The idea of fusion using reliable abstract sensors was first introduced by Marzullo[62].
This approach incorporates fault tolerance in multi sensor environments by utilizing
a geometric derivation for fault masking. Here, a sensor is seen as a piecewise
continuous function with parameters shape and accuracy range. Shape is defined by
the form of uncertainty around the sensor measurement value and accuracy range
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is the interval containing the true value of a measurement entity. By combining
those sensors, an improved abstract sensor can be created. The accuracy range of
this abstract sensor is hereby derived by finding intersections of ranges of the single
sensors. Further, with this approach, fault-tolerant sensor averaging is introduced,
which results in an abstract sensor interval that contains the true value for sure, even
if t sensors are faulty. Here, an arbitrary number of t out of a maximum of 2t +1
sensors can be faulty, for a fault-tolerant sensor averaging algorithm to produce
reliable results. In the original version by Marzullo, this sensor averaging is applicable
in a linear one dimensional case. Chew[63] extends this to work with sensors of
arbitrary dimensions. In a multidimensional case, 2t ·D+1 sensors are required to
still tolerate t faulty sensor, where D is the number of used dimensions.
In contrast to this, our approach only partially investigates reliability. Therefore, it
is not used in this work.

3.2.3 Deep Reinforcement Learning

Another fusion approach can be achieved by Deep Reinforcement Learning. A deep
neural network is able to fuse data by learning a shared representation between those
inputs[64]. In case of unknown optimal feature representation, it is also possible,
that this deep neutral network models a function approximation of Q-Learning[65],
which then can be used to derive a policy. Here, the action-value function is
Q(s,a) = Eπ [∑

T
k=t γk−trk|st = s,at = a] with Q as the expected discounted return of ac-

tion a in state s after executing policy π including the discount factor γ and reward r.
The policy π(a,s) determines which action to take in a certain state. The optimal pol-
icy Q∗(s,a) = maxπQ(s,a) is found by following the optimal Q function. Hereby, this
function satisfies the Bellman optimality equation Q∗(s,a) = Er,s′[r+ γ max

a′
Q∗(s,a)]

and is typically found by iteratively taking the action with the highest Q-value for
each state π(a,s) = argmaxaQ(s,a). The approximation of this Q-value with deep
neural networks creates Deep Q-Networks(DQN), which take the different inputs for
the fusion as the current state s.

This fusion approach is a high level end-to-end approach, meaning it creates commands
regarding which action to take by using a derived policy without paying attention to
the numerical values of the fusion of the inputs. It requires a lot of a priori training,
to find the optimal policy and is not suited for instant use cases and therefore not
well suited for our use case.
Additionally, the actions in this case consist of different commands instead of weights
on the sensor inputs. Therefore, the following results are not perfectly suited to be
compared against our work, but can still set a reference. In a real world scenario,
the approach can deliver robust results, combining multiple unimodal sensors, with
a position estimation accuracy in the interval [10−2,100] meters depending on the
fusion architecture used[65]. This is shown in Figure 3.3. Here, all fusion approaches
have a steep increase in cumulative distribution and start to settle at a distance
between 0.1 and 0.2. The cumulative distribution at the point of settlement ranges
from approximately 0.6 to 0.9. This means 60 to 90% of the results have a position
estimation error of 0.1 to 0.2 metres, depending on the used fusion architecture.
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Figure 3.3: Cumulative distribution of the final position estimation error[65]

3.2.4 Multi-Sensor Occupancy Grid

Another fusion approach, that can be utilized, is through multi-sensor occupancy
grids. Occupancy Grids are a form of certainty grids, which only track occupation of
a cell or not. It can be used especially when multiple sensors, which track different
types of obstacles, can not be combined using Bayesian Filtering methods like Kalman,
because it will result in conflicting information[56]. Instead, each sensor k gets a
preprocessed into its own occupancy grid mk and the grids get combined afterwards.
This can be done with De Morgan’s law for independent measurements, shown in
Equation 3.10.

p(m) = 1−∏
k
(1− p(mk)) (3.10)

Or the maximum can be computed like in Equation 3.11.

p(m) = max
k

(p(mk)) (3.11)

The latter yields the most pessimistic estimate of the inputs. Here, if any of the
input grids show an occupation, the combined grid will also show it.

This fusion approach is partly similar to the one we use in this thesis, but more
inaccurate by using only occupation and not certainty in each cell. So, no gradient
of certainty of the obstacle location can be tracked. Additionally, each cell in this
grid is a single hypothesis about the obstacle and therefore less information about a
single teammate is given Hence, both of these disadvantages lead to less knowledge
about the overall teammate location.





4. Bayes-Hempel Method

This thesis covers the tracking and localization of teammates in a robotic swarm
environment2.1. In a swarm of robots to avoid collisions and prepare movement
planning, an individual robot tries to keep track of teammate positions using the
likelihood of their residence. The tracking is done using different sensors, which are
built onto each robot. Each sensor source gathers encoding-independent data, which
is stored in an encoding-dependent discrete grid of the environment, as described
in 2.2. The stored data of each sensor is then combined utilizing a sensor fusion
approach using the Bayesian theorem as described in 2.4. Using these grids, data
can be evaluated by comparing relative differences in likelihood and an estimate
of absolute differences in meters of real positions of teammates and fused sensor
information.

4.1 Solution Design - Bayes-Hempel Method
In this section, the design of the Bayes-Hempel Method is described. The method
takes measurement data as the input as described in the following section. Afterwards,
the processing and storage in modified certainty grids is laid out. The fusion of those
modified certainty grids derived from the Bayes theorem is presented in the last part
of this section.

4.1.1 Data Flow

To tackle the problem described in the section above, a solution was designed. The
underlying data flow of the created solution used during this thesis can be seen in
Figure 4.1. Each row in this figure represents a time step during the tracking and
consists of several components.

The static map of the underlying environment is used as one component, which can
be utilized to distinguish static walls and obstacles from possible teammates. This
is done by comparing the other input sources with the static map and subtracting
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those static walls and obstacles from the measurements.

Another component, if one result is already calculated, is the estimated result of the
previous time step. This old result is used to insert a time component into the current
estimate. But before it can be used, highlights of the old result with high likelihood
of residence get emphasized to be more susceptible to further modifications. This
means possible the likelihood of possible residence points gets increased. Then, a
Gaussian filter is applied to the grid, which catches onto those highlights and expands
them in every possible movement direction of the teammate. Hereby, a standard
deviation according to the maximum movement speed of the robots is chosen in a way
that incorporates most movements, but still provides a lot of information about the
teammate. Hence, the blur, which reflects the uncertainty, caused by the Gaussian
filter is correlated to the movement of the robot in each time step[56]. Therefore,
the old estimate compensates for the movement of the teammates and increases the
accuracy even if the robot lost track of its teammate.

Lastly, an arbitrary number of sensor sources n are the additional components needed
to mainly track the teammates. Here, the range measurements of an ultra-wideband
sensor and the assumptions created by a LIDAR sensor are used, but further ones
can be added at will. They provide continuous information input and get sampled at
discrete time steps. Therefore, depending on the sensor, the sampled data of each
sensor may not represent the exact same time step as the others. But it is ensured,
that the latest input data is used in each sample interval. Hence, the sample interval
time is chosen according to the utilized sensors.

Like Thrun et al.[56] stated and described in Section 3.2 for occupancy grids, separate
preprocessing of inputs and subsequent combination is a popular approach. The
gathered data from the components get processed into modified certainty grids and
is then combined using a Bayesian fusion approach. Both are further described in
the following sections.
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4.1.2 MCG - Modified Certainty Grid

To further process and combine all component data into a result, they have to
be available as certainty grids as described in Section 2.2, but with additional
improvements made in this work. The transformation of every component’s gathered
data into a modified certainty grid is performed as follows. Every input measurement
has a corresponding assigned cell in the grid. Therefore, each measurement, recorded
in the metric space M, must be transferred into the grid space G by using the
coordinate of the origin of the underlying grid (XO,YO) and the corresponding grid
resolution R. With this information, a formula can be established to transform a
metric coordinate (XM,YM) into a grid coordinate (XG,YG). This is shown in Equation
4.1.

XG = (XM −XO)/R and YG = (YM −YO)/R (4.1)

Afterwards, the resulting coordinate has to be subject to discretization, so that
every grid space coordinate has exactly one corresponding grid cell and the input
measurement can be mapped onto the grid. After that, every cell of the grid, that is
not affected by those measurement inputs, gets an unknown probability assigned.
This probability reflects the uncertainty whether a teammate is present in this part
of the map, considering lack of knowledge on this part or sensor inaccuracy.

Now, contrary to the ordinary certainty grid, in this thesis, each grid refers to a
single tracked object. That means, instead of each cell being seen as a hypothesis
about whether the teammate is there, the whole grid represents the hypothesis about
the teammate’s residence. This is achieved by dividing the assigned value of each
grid cell Ci j with the sum of all grid cell values. It is shown in Equation 4.2.

Ci j =
Ci j

∑
I,J
i=0, j=0Ci j

(4.2)

Hence, all grid cells can be again summed up to 1, instead of each cell being in
the probability range of [0,1]. Here, it is possible to obtain small to tiny numbers
for every grid cell, depending on the number of grid cells in the grid. To not lose
precision, values of data type double are used, which are able to store up to 15 digits
as they are. Additionally, a conversion constant is applied to decrease the number of
inexpressive decimal places.

These modifications to the certainty grid may increase the payload to process and
transmit for each robot depending on the number of teammates, but also lead to
more distinct knowledge about every single teammate, which is a goal to achieve
in teammate tracking. Additionally, due to this method, every sensor output is
transformed to a grid and is combinable independent of its modality.

4.1.3 Bayes Fusion

This approach represents a cooperative fusion because every input observes the
location of the tracked teammate, but with different observation techniques. Ad-
ditionally, concepts of a competitive fusion can be found here as well by observing
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the same modality with different sensors. Therefore, the Bayesian fusion of the
component inputs yields a result with increased accuracy, reliability, robustness as
well as emerging views on the tracked teammate. Although, the fusion will be used
in a robot use case, and therefore in an embedded environment, instead of a low level
fusion, an intermediate level fusion is used, because the sensors utilized in this case
are already on an intermediate level themselves by combining different raw sensors to
yield only a range measurement. This means, instead of combining raw sensor data,
data already processed to ranges gets combined and translated into probabilities in
a 2D grid. Hereby, none of the information yielded by the sensors is or neglected.
Hence, the Bayesian fusion approach is a fusion on intermediate-level. This may
increase the complexity and computation time, but ensures that sensors of many
kinds can be fused and therefore increases the expandability.
Based on the work of Moravec[11], but fully derived and adjusted to this work’s use
case, the goal is to calculate the probability of residence Ci j of a cell in the fused
result, given two measurements of sensors A and B.

p(Ci j|Ai j ∩Bi j) (4.3)

This is shown in probability 4.3. From the individual sensor measurements, only the
probabilities shown in formula 4.4 are known.

p(Ci j|Ai j), p(Ci j|Bi j) (4.4)

Now, the unknown probabilities need to be eliminated to be able to calculate the
desired result, which is done with the help of the in Section 2.1 established formulas.
By using the Bayes’ theorem 2.1 on our goal probability 4.3, the Equation 4.5 can
be derived.

p(Ci j|Ai j ∩Bi j) =
p(Ci j) · p(Ai j ∩Bi j|Ci j)

p(Ai j ∩Bi j)
(4.5)

Here, the law of total probability 2.4 can be used on Equation 4.5, which results in
Equation 4.6.

p(Ci j|Ai j ∩Bi j) =
p(Ci j) · p(Ai j ∩Bi j|Ci j)

p(Ci j) · p(Ai j ∩Bi j|Ci j)+ p(¬Ci j) · p(Ai j ∩Bi j|¬Ci j)
(4.6)

To further transform the preceding Equation 4.6, parts can be rewritten using the
rules for conditional probabilities 2.2. This results in Equation 4.7.

p(Ci j|Ai j ∩Bi j) =
p(Ci j) ·

p(Ci j∩Ai j∩Bi j)
p(Ci j)

p(Ci j) ·
p(Ci j∩Ai j∩Bi j)

p(Ci j)
+ p(¬Ci j) ·

p(¬Ci j∩Ai j∩Bi j)
p(¬Ci j)

(4.7)

Now, this equation can be simplified into Equation 4.8.

p(Ci j|Ai j ∩Bi j) =
p(Ci j ∩Ai j ∩Bi j)

p(Ci j ∩Ai j ∩Bi j)+ p(¬Ci j ∩Ai j ∩Bi j)
(4.8)

Then, if the chain rule of probabilities is applied to the beforehand simplified equation,
the combined probabilities can be resolved. This results in Equation 4.9.

p(Ci j|Ai j ∩Bi j) =
p(Bi j|Ci j ∩Ai j) · p(Ci j|Ai j) · p(Ai j)

chainRule · p(Ai j)
(4.9)
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Hereby, the chainRule is equal to the following equation.

chainRule = p(Bi j|Ci j ∩Ai j) · p(Ci j|Ai j) · p(Ai j)+ p(Bi j|¬Ci j ∩Ai j) · p(¬Ci j|Ai j)

Fortunately, the combined equation can be simplified again into Equation 4.10.

p(Ci j|Ai j ∩Bi j) =
p(Bi j|Ci j ∩Ai j) · p(Ci j|Ai j)

p(Bi j|Ci j ∩Ai j) · p(Ci j|Ai j)+ p(Bi j|¬Ci j ∩Ai j) · p(¬Ci j|Ai j)
(4.10)

Now, only the probabilities containing Bi j are still unknown. Here, like Moravec[11]
did, the conditional independence between probabilities Ai j and Bi j is assumed, which
leads to the relation shown in 4.11 between these probabilities.

p(Bi j|Ci j ∩Ai j) = p(Bi j|Ci j), with Ai j and Bi j conditional independent (4.11)

By using this relation on Equation 4.10, the unknown parts can be simplified into
Equation 4.12.

p(Ci j|Ai j ∩Bi j) =
p(Bi j|Ci j) · p(Ci j|Ai j)

p(Bi j|Ci j) · p(Ci j|Ai j)+ p(Bi j|¬Ci j) · p(¬Ci j|Ai j)
(4.12)

The Bayes’ Theorem can then be used on the still unknown probabilities of this
equation. This results in Equation 4.13, which afterwards can again be simplified
into Equation 4.14.

p(Ci j|Ai j ∩Bi j) =

p(Ci j|Bi j)·p(Ci j)
p(Bi j)

· p(Ci j|Ai j)

p(Ci j|Bi j)·p(Ci j)
p(Bi j)

· p(Ci j|Ai j)+
p(¬Ci j|Bi j)·p(¬Ci j)

p(Bi j)
· p(¬Ci j|Ai j)

(4.13)

p(Ci j|Ai j ∩Bi j) =
ResidenceProbs

ResidenceProbs+NoResidenceProbs
(4.14)

Hereby, ResidenceProbs are the events related to the likelihood of residence and
NoResidenceProbs are the complementary events to this. Both are shown in the
following.

ResidenceProbs = p(Ci j|Bi j) · p(Ci j) · p(Ci j|Ai j)

NoResidenceProbs = p(¬Ci j|Bi j) · p(¬Ci j) · p(¬Ci j|Ai j)

This resulting form contains the known parts shown in 4.4 and additionally the
probability p(Ci j), which is the a priori assumption, that something is detected in
the area. So to speak, it is the overall probability, which indicates the likelihood to
encounter an object or other robot in the environment and is dependent on the size
of the environment as well as the swarm size. Further, as visible in Equation 4.14, it
can be simplified again to reduce the complexity. This results in the final Equation
4.15, which can be used to fuse sensor information with Bayes’ reasoning.

p(Ci j|Ai j ∩Bi j) =
1

1+ p(¬Ci j|Bi j)·p(¬Ci j)·p(¬Ci j|Ai j)
p(Ci j|Bi j)·p(Ci j)·p(Ci j|Ai j)

(4.15)

4.2 Implementation
In this section, the architecture as well as the used hard- and software is explained.
From those design decisions, the transformation from used sensor data to grids and
the simulation of errors are derived.
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4.2.1 Languages, Software, Frameworks
The designed solution uses Turtlebot3 robots of type burger, which are designed and
developed by ROBOTIS Co.,Ltd.[66]. Every used robot utilizes the Robot Operating
System(ROS)[67]. It is an open-source software development kit for robotics operating
cross-platform. Here, in detail, ROS 2[68] in version Foxy Fitzroy in combination
with python3[69] was used to develop the software used in this thesis. For easy
maintenance and deployment, the experiments in this thesis got conducted with
virtualization using the Gazebo Simulation Framework[70]. The results from those
experiments get collected using the rosbag package[71] from the ROS framework.
And lastly, get analysed using python libraries pandas and NumPy.

4.2.2 Used Sensor Sources
LIDAR

Every robot used for this thesis has a factory equipped HLS-LFCD2 LIDAR scan-
ning system from Hitachi-LG Data Storage, which scans 360 degrees around the
robot with a rotation frequency of 5 hertz. This way, each input from this sensor
delivers 360 ranges around the robot, one for each degree. Its specifications are
well documented[47] and are used to transfer measurements in the grid space with
related precision and errors. As this sensor is factory equipped on the robots, the
specifications fit the usage with those robots very well. By using laser to detect
the environment, this sensor can be classified as an optical sensor. According to
Section 3.1 this type of sensor fits our use case in an excellent way, by having a high
accuracy as well as a fast propagation time to track moving robots. Additionally,
multiple input sources can be derived from information gained by this 360 degree
optical tracking sensor. First the obvious assumption, when the sensor returns a
certain range. At this range, an object is located, and the grid related cell gets a
high probability assigned. This assumption will be used to create the first input
source. This input created with by points from the laser range measurement is shown
in Figure 4.2 Here, the used environment is overlaid on the yielded laser points to
show the correlation. The tracking robot is shown with a little model of the robot.
Notable while working with the LIDAR sensor to pinpoint a location is that the
detected ranges do not range towards the centre of the object, but to the edge of
it. Therefore, the LIDAR sensor detects the smallest range to it, regardless of the
object size.
The second input source relies on the assumption of non-transparent objects and
robots, that are given in our use case. Hence, it can be assumed that the area the
laser traverses until finding an object is empty because otherwise the laser would be
intercepted by other objects in its path. This is shown in Figure 4.3. Here, the used
environment is also overlaid for clarification of relations and the tracking robot is
shown with a little model of the robot. This means the second input is a polygon
area of low probability grid cells around the robot with the coordinates of detected
objects as vertexes, called the laser area.

Range UWB

The comparison in Section 3.1 reinforces the use of Ultra Wideband Time of
Flight(UWB TOF) sensors, which are already available in the swarm laboratory
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Figure 4.2: A certainty grid yielded by the laser points input

SwarmLab. Here, the DWM1000 modules by DecaWave Ltd.[72] shown in Figure
4.4 are used. Based on its high propagation speed and accuracy, it is well suited for
range tracking of teammates. Furthermore, it is small hence easy to attach and costs
an affordable amount of money. Additionally, the specifications, limitations and
influences of disturbances of the DWM1000 modules is well documented[73] and can
further be used to translate the range measurements into the grid space and to help
in evaluating errors. Here, it has to be kept in mind, that each sensor module ranges
to another module and therefore the yielded range is determined by the position of
these modules on the robots.
The tracking robot and every teammate is equipped with one of those UWB sensors,
utilizing a unique robot ID for each. Therefore, a distinguishable range tracking
between every robot can be done, which results in a set of ranges from the tracking
robot to each teammate. By utilizing the position of the tracking robot, the range
to each teammate is then converted into the grid space in the form of a circle. The
specific range functions as the radius around the robot. This is shown in Figure 4.5.
Here, like the inputs above, the used environment is overlaid, and the robot is shown
with a little model. So, the resulting input source is a set of grids with high cell
probabilities on a circle around the tracking robot. According to this, the cardinality
of this set is equal to the number of tracked teammates.

4.2.3 Architecture

The designed code architecture, that is deployed on each tracking robot, relies on
the principle of independent, interchangeable and expandable modules like Shafer et
al.[74] proposed. It is shown in Figure 4.6. Each sensor and input source, as well as
the source combiner, is independently encapsulated and stores all data needed for its
functionality in its respective module. Also, the method of combining the inputs can
be exchanged easily by adding a new function in the combiner module containing
the combine logic and using the data collected in this module as input. This leads to
an easy to maintain code base, on which further development and expansion can be
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Figure 4.3: A certainty grid yielded by the laser area input

Figure 4.4: DWM1000 module used in this thesis

done.
The only interconnection between modules is established via ROS topics. Every
module communicates by sending common Occupancy Grid ROS messages[75] over
these topics. Therefore, the only static reference between every module are the
corresponding ROS topic names. Hence, a new module can be added by solely
defining those new ROS topic names. With increasing swarm size, new challenges
arise in terms of transmitted size of data. More teammates lead to the sending of
more grids, because all robots need a grid for each teammate. If the size of data
exceeds a certain amount, the data has to be compressed or else some data can
get lost. Further, the transmission latency between each module can increase to a
point, at which the correlation between information input and processed result is
lost, because of a too severe time delay. Therefore, this needs to be considered for
big swarm sizes.

4.2.4 Simulating Errors
The experiments during this thesis are conducted within a simulation. Therefore,
independent faults on the inputs need to be simulated as well. Here, the simulated
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Figure 4.5: A certainty grid yielded by the range input
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Figure 4.6: Modular architecture used in this thesis

robotic system is assumed to be an in a settled state, so the system is in the second
part of the bathtub curve with a constant failure rate known as random failures[76].
The associated cumulative distribution function can be described with the help of
a Weibull distribution[77]. Therefore, a simulation of faults like Weikert et al.[78]
was applied. Each input is assigned a specific time based on the 2-parameter version
of this Weibull distribution, which couples the fault rate to the runtime. Then, if a
fault occurs, a second Weibull distribution, independent of the runtime, is used to
determine the duration of the fault. Here, the parameters are chosen in a way, that
faults on an input occur multiple times during one run and the mean duration of
this fault is at least one time step of the system. Hence, significant fault scenarios
can occur with one or more sensors having a fault during the run.
Measurement faults can be divided into two categories: random and systematic.
Systematic faults are caused by the sensors themselves, and random faults are
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mainly caused by interference with the environment. Zug et al. [79] distinguished
systematic faults mainly between constant, continuous and non-continuous faults.
Here, constant and continuous faults usually can be detected and corrected and are
therefore not important to investigate. Additionally, the simulation does not include
error modelling on the sensor inputs and the measurements should have no significant
systematic faults. Random faults are of more interest here. They are classified as
varying non-continuous faults and are usually caused by the physical properties of the
measurement process and get influenced through varying environmental conditions[79].
In a real scenario, this can happen and hence they need to be analysed. In this work
3 different types of random faults and their influences were investigated: complete
failure of inputs, value-correlated fault and non value-correlated fault. The first is
modelled through a neglect of an input source. The value-correlated fault is modelled
by applying a distortion on the yielded values and the non value-correlated one
overwrites measurement values at random to the yielded result grid. This should
cover most types of faults that can occur in a real scenario. Thus, an insight on
environmental influences on the approach is gained from an experiment applying
these faults.



5. Evaluation

In this chapter, we evaluate the introduced fusion approach by conducting experiments
to answer the established research questions. First, the experimental design, a suited
evaluation metric as well as feasibility requirements are described. Afterwards,
several experiments investigating the overall performance, the adaptability, and the
robustness to faults are presented and evaluated regarding the requirements and the
research questions are answered.

5.1 Experimental Design
First, the prerequisites for all experiments are established by describing the underlying
environment and the used robots. Then, the overall evaluation methods are introduced
to examine the requirements concerning performance, adaptability, and robustness.

5.1.1 Environment

Every experiment is conducted with one robot tracking one teammate. A dynamic
and time dependent environment is used to ensure that it is close to real scenario
setting. This environment is shown in Figure 5.1. It was created using the SLAM

Figure 5.1: Arena, in which the swarm drives

Toolbox by Macenski et al.[80] integrated in the ROS Framework. Here, one robot
drove through a custom arena and mapped the environment with its attached LIDAR
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sensor. The black parts represent the boundaries and obstacles of the arena. It is flat,
so that robots can not overlook each other through height differences, and has a size
of 112x103 cells with a used resolution of 0.05 meters per cell. This means each cell
represents a 25 cm2 part of the arena, and every produced grid covers the whole size
of the arena. Further, in a simplified approach neglecting the self localization of the
tracking robot, the map is used as input for the static map component of every robot.
So, every robot has the same map as the basis to operate on and knows its position in
it. Practically, this is not realizable because each robot has to localize itself. However,
the additional information provided by this were not utilized. Therefore, it has no
impact on the experiments.
Each teammate moves along a predefined path through the arena with a duration
of about 40 time steps. At first, the tracking robot follows one teammate around
with an incorporated delay, but later strays from following to incorporate obstacles
in between the teammate and itself. Hence, line of sight until around time step 12,
non line of sight from time step 30 and a mix of both in between these steps, can
be tested. When using real robots, various disturbances like Wi-Fi interferences
or delays would arise. As we utilize a simulation and aim to examine quality and
potential errors, those disturbances are neglected. The influence of different types of
faults as described in Section 4.2.4 will be analysed when investigating the robustness.

5.1.2 Robot specs

The robots used for the experiments have a size of about 20x20 centimetres. Therefore,
a robot takes up a space of roughly 4x4 cells inside the grid. This space will be used
to create a square further called the robot box, which will be used in the following
experiment evaluations and is described more precise in 5.1.3. Further, the robots
have a maximum velocity of 0.22 metres per second. Hence, as mentioned in Section
4.1.1, the old estimate needs to adjust for possible movement of the robot. On average,
this results in about 5 pixels within a sampling interval of 2 seconds. Therefore, the
Gaussian filter utilized to smooth the old estimate is initialized with a sigma of 5
according to the velocity. With a normally distributed likelihood measurement, this
leads to a possible movement area of 5x5 pixels.
Further, the sensor inputs get recorded at discrete time steps, but may be measured
at any time within the time interval between discrete steps. Therefore, the real robot
positions at every time step k do not match the position, when each individual sensor
input yields the measurement data and therefore the result gets more inaccurate.
To counteract this decrease in accuracy, the sensor inputs additionally contain a
timestamp, which represents the obtaining time of the raw data. By averaging
these raw data time stamps, the mean acquisition time, to which the sensor inputs
correspond, can be calculated. And by using this mean time, the real robot position
gets interpolated between the time steps k and k− 1. This rudimentary measure
reduces the average position error by up to 2 centimetres. In the following, only the
interpolated real robot position is used to calculate the evaluation metrics.

5.1.3 Evaluation metrics

The evaluation metric consists of a relative and an absolute part. Because of the
grid property of an overall grid cell sum of 1 described in the methods Section 4.1.2,
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we can assume a probability density functions on the result grid. Therefore, we
can evaluate different parts of the grid separately in terms of probability and make
statements about the relative accuracy as follows. Here, a square of cells in the grid
with size equal to the previously estimated robot size is marked. The centre of this
square represents the real position of the teammate, whose result grid we want to
evaluate. Therefore, it is called the robot box Boxr. The probability density function,
inside the robot box, gets compared to the overall probability density function of
the grid without the robot box. This is called the outside box Boxo. Additionally,
another square the size of the robot with the highest probability density function
in the whole grid is determined and used for further evaluation of the results. This
is called the maximum box Boxm. Here, because of the grid adding up to 1, the
concrete average probabilities in each box can be compared. Mathematically, this
can be described as follows. Let c ∈ C be a cell of all cells in the grid, with P(c)
the probability in the cell. Additionally, let cr ∈ Boxr and cm ∈ Boxm be a cell of the
respective box. The average probability P(Box) of both robot and maximum box can
then be calculated with Equation 5.1.

P(Box) = ∑
c∈Box

P(c)
|Box|

(5.1)

Moreover, let co ∈C \Boxr be a cell in the outside box. The average probability of
this outside box Boxo can then be calculated as seen in Equation 5.2.

P(Boxo) = ∑
co∈C\Boxr

P(co)

|C|− |Boxr|
(5.2)

Then with the help of the above, a threshold of 50% higher average probability
values inside the robot box P(Boxr) than outside of it P(Boxo) is used to determine
if the teammate was found or something went wrong and the teammate could not be
tracked. Because of narrow distributed high probability values in the grid, a threshold
of 50% was chosen to exclude noise on the cell probabilities but to still include not
well performing measurements and to further evaluate them. This relative metric of
the evaluation utilizing a gradient in certainty can therefore be described as follows.

TeammateFound = P(Boxr) > 1.5 · P(Boxo) (5.3)

Then, if a teammate was found, the absolute accuracy as distance between the result
estimate, which is the cell with the highest likelihood in the maximum box, and
the real position gets calculated. This happens by comparing the two-dimensional
position of the grid cell with the highest likelihood of residence p⃗m to the two-
dimensional real position of the teammate p⃗r. Hence, the absolute accuracy can then
be calculated in metres, as shown in Equation 5.4.

Distance =
√

(xr − xm)2 +(yr − ym)2 (5.4)

5.1.4 Requirements of Successful Teammate Tracking
The previously defined metrics can be used to check if the requirements for a suc-
cessful teammate tracking apply. Hereby, the requirements are based on the research
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questions about to be answered. First, the accuracy requirement of the yielded result,
which is related to the size of the used robots, is described. As described in Section
5.1.2, the robot has a size of about 20x20 centimetres. Therefore, a mean distance
from real to calculated position of the teammate shorter than 30 centimetres with an
associated standard deviation of under 15 centimetres would be a feasible requirement
in terms of accuracy. Second, a robustness requirement is established. Here, in case
of an input faults, whether failure or error, the uncertainty of the result is still be
decreased. This means, a gradient of certainty inside the result grid exists and can
be confirmed through the relative evaluation metric described earlier in Equation 5.3.
The mean absolute distance yielded with input faults will be larger according to the
seriousness of the failure. Third, adaptability to different use cases is a requirement
for a successful tracking. Therefore, by manually adjusting parameters inside the
tracking approach, different results for different environments can be expected. The
difference in these results can be confirmed by the relative and absolute evaluation
metric.

In the following, the conducted experiments are analysed and evaluated regarding
the feasibility of the Bayesian Fusion approach according to the defined requirements.
Here, every section describes the experimental design at first. Then, the gathered data
is presented, and lastly those data is evaluated in terms of accuracy and feasibility
using the previously defined metrics.

5.2 Experiments for Independence of Sources
This experiment is conducted to give insight into in chapter background described
stochastic independence 2.5 between the input sources. Independence is needed, but
dependence is inevitable between the different sources. So, this experiment should
show the correlation between the sources described earlier and investigate how large
this correlation becomes.

5.2.1 Results

The two-step test described earlier was conducted with two robots over 40 different
runs.
The first part of the test wants to examine the linear dependence between the sensor
sources. This is done by utilizing the covariance correlation. So, for each run, the
measurement data of all input sensors is collected and pair-wise compared with each
other. The resulting covariance values of all runs are shown as box plots for each
sensor pairing in Figure 5.2. As you can see, the x-axis shows the correlation pairings
and the y-axis shows the degree of correlation. The box plots for each pairing differ
in value and interval size. The box plot related to the correlation between laser
points and the laser area has the smallest interval size, and the interquartile range
is located in the interval [0.01,0.05]. Here, the median of the data set is located at
0.02. The maximum of this box plot is at 0.08 and the minimum gets negative with
a value of -0.025. The box plot showing the correlation between the range and the
laser area has a larger variance in the data, with the interquartile range located in
the interval [0.1,0.17], a maximum at 0.23 and a minimum at 0.02. The median
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Figure 5.2: Covariance Correlation between the sensor input sources laser points, laser area, range

of the data set is hereby located at 0.13. The last box plot of the three, the laser
points and range measurement correlation, is located mostly below zero and has a
high variance, contrary to the other two. Here, the interquartile range is located in
the interval [−0.135,−0.04] with a median at -0.08. The minimum reaches as low
as -0.25, and the maximum is located at a positive value of 0.077. For every box
plot ordered as described, the interval size between the 0th percentile and the 100th
percentile increases by approximately 1.0. Further notable for every box plot, the
data sets are skewed towards 0.0 and therefore tend to be more accurate towards
zero.
The second part of the test is designed to examine, whether the measured sensor
data comes from a multivariate normal distribution by analyzing the pValue of the
measurement data for each sensor pairing per run. This pValue is a two-sided chi
squared probability to test the hypothesis, that the values are drawn from a joint
normal distribution. It is tested against a threshold to specify whether to reject or
accept the hypothesis. In this case, the threshold has a typical value of 0.05 and
the pValue of 40 runs is plotted as box plots. This can be seen in Figure 5.3. Here,
the pValue is shown on a logarithmic scale and the used threshold is drawn as a
horizontal dashed line. The box plot for the laser points to laser area has the lowest
value range with an interquartile range located in the interval [1.49 ·10−4,3.9 ·10−4]
with a median at 2.83 ·10−4. The minimum is located far below this at 1.3 ·10−5, but
outliers even range to almost the threshold with a maximum at 0.046. The pValues
for the laser points to range distribution test have a minimum of 1 · 10−5 and a
maximum of 0.022. Hereby, the interquartile range is located more to the maximum
within the interval between [1.24 ·10−4,3.2 ·10−3] with a median at 7.75 ·10−4. The
box plot of the range to laser area joint distribution has the interquartile range
with the highest pValues of all the three multivariate distributions. This interval is
located between [2.28 ·10−3,2.19 ·10−2]. Here, the median is located at 7.67 ·10−3.
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Figure 5.3: pValue from joint normal distribution test of input sources

In contrast to the other plots, the 100th percentile is located above the threshold of
0.05.

5.2.2 Evaluation

The experiment was divided into two parts, linear dependence correlation and joint
normal distribution origins. The parts get evaluated separately, and the results are
then combined for an overall evaluation regarding stochastic independence.
For the first part, all correlations between the sensor pairings tend to be near zero, with
intervals including the desired value of zero, which represents a linear independence.
This means linear independence is not strictly given, but the correlation between
the sensors is only small. Additionally, the box plots indicate a possible influence by
errors of different intensity, because of the skewness towards values near zero. That
means, the closer the values are to zero, the less variance is in the data. Hence, the
correlation might be even smaller.
For the second part, pValues above the marked threshold of 0.05 mean the hypothesis,
whether the data originates from a normal distribution, can not be rejected. Thus,
the sampled data is likely to have a normal distributed origin. If the pValue is smaller
than the threshold, the hypothesis can be rejected and the sampled data has likely
no origin in a normal distribution. The pValue box plots of the joint distribution
of laser points and laser area are located far below the defined threshold. Only 1
outlier scratches at this threshold, but it is not significant. Therefore, the sampled
values from this input correlation are very likely not to originate from a multivariate
normal distribution. The pValues of the correlation between laser points and range
measurements are located closer to the threshold and lie within a wider interquartile
range, which encapsulates the points-area interquartile range between the 25th and
the 50th percentile. That means, more than 50% of the pValues yielded are larger
than the points-area pValues. This means, the points-range data is more likely to
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come from a joint normal distribution than the points-area, but still not exceeds
the threshold. The pValues yielded with the range and laser area correlation are
even larger than the points-range values, which only reach to the 50th percentile at
maximum. Few values between the 75th and 100th percentile exceed the threshold.
Therefore, it is likely that this data originates from a normal distribution with
consideration of possible errors. Hence, according to the pValues only one input
correlation is likely to originate from a joint normal distribution.
In summary, the linear dependence correlation between all sensor pairings is very
small to zero, which implies a near linear independence. Additionally, the range
and laser area correlation set is likely to be drawn from a joint normal distribution.
Therefore, in combination and under consideration of possible errors, near stochastic
independence between the range and laser area input can be assumed. The other two
input correlations can only be assumed to be linear independent. Nevertheless, this
supports the usage of naive Bayes assumptions for the use with the Bayes theorem.
Because linear independence can be assumed for all correlations and stochastic
independence for one out of three, it may not interfere largely with the functionality
of the Bayes theorem, as additionally deviations are not preventable in the robotic
use case as described earlier in Section 2.5.

5.3 Experiments for Bayesian Fusion
This experiment is used to examine the accuracy of the tracking and is therefore
directly correlated to the feasibility of the Bayesian Fusion. Here, the likelihood of
residence inside the robot box in the result grid gets compared to the real position
box of the teammate and the likelihood outside the robot box. First, the relative
probabilities are used to identify if an increase in certainty happened and the
teammate was found and afterwards the absolute positions get compared in terms
of accuracy. This experiment is done to get insight into the feasibility defined by
accuracy and deviation as described in Section 5.1.4.

5.3.1 Results

In the following, the results of the conducted experiment are shown. First, the
relative probabilities inside the grid get compared. This is shown in Figure 5.4.

This figure contains box plots showing the average likelihood in the result grid on a
log-scale over every experimental run.

The left box plots show the average probabilities inside the robot box, and the dashed
line marks the mean over all runs. This mean of average probabilities is 8.59 ·10−5

and the associated standard deviation is 6.82 ·10−5.

The box plots in the middle show the average probability outside the pre-defined
robot box, with a dashed line as mean as well. Here, the mean has a value of
6.46 ·10−6 with a standard deviation of 9.17 ·10−7. The overall deviation and thus
the interquartile ranges are significantly smaller than inside the robot box and have
smaller values so that the values do not overlap once. Here, the calculated mean over
all average probabilities inside the robot box is over 13 times larger than the mean
calculated outside the robot box.
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Figure 5.4: Overall Accuracy: average probability in robot box, outside robot box, and around max
probability

The box plot on the right shows the average probability in a square equal to the size
of the robot box with the maximum average probability, the maximum box in our
grid estimate. The average probabilities in the maximum box have a mean value
of 2.42 ·104 with an associated standard deviation of 9.84 ·105. As shown here, the
mean of average likelihood is still higher than that of the robot box, but the intervals
are overlapping. This means the probability inside the robot box is closer to the
maximum likelihood than to the minimum likelihood of residence.
These plots show that the average probabilities inside the robot box exceeds the
threshold of at least 50% higher probability values calculated with Equation 5.3.
Therefore, the teammate was found, and the distance was calculated with Equation
5.4. The absolute distances in metres over every experimental run are shown as box
plots in Figure 5.5. Here, only 2 out of 40 runs have interquartile ranges significantly
exceed the 50 centimetres mark. The third quartile of the interquartile ranges of
those runs can reach up to about 1 metre at maximum. The distribution in all
interquartile ranges is not symmetrical, but heavily skewed to the left. This means
25% of all values in the interquartile range are crowded in a significantly smaller
range from the first quartile to the median, and values above the median are wider
distributed. Therefore, more accurate distances gather inside smaller intervals and
distances, that are more inaccurate, are located in wider intervals also including
scattered outliers of up to over 2 metres. The mean over all distance values yielded
by all experimental runs is 33.85 centimetres, with a standard deviation of 33.95
centimetres overall. The mean is shown as the horizontal line in the figure.
A latency measurement, shown in Figure 5.6, can be used to examine the correlation
between the latency behaviour of the input sources and the distances per run. Here, a
significant standard deviation was rare and only occurred on run 11 with 1.5 seconds
deviation on the range input, on run 15 with a deviation of 1 second for the laser
area input and on run 28 with all 3 sensor inputs having a deviation with 3 seconds
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Figure 5.5: Overall Accuracy: absolute distance between calculated position and real robot

on the laser area input, 1.5 seconds on the laser points input and 0.5 seconds on the
range input.
The former displayed distances incorporate values yielded over the whole run, in-
cluding change from line of sight to non line of sight scenarios. To further analyse
the feasibility of the Bayesian fusion and get insight into the influence of this non
line of sight scenarios, the conducted experiments get plotted over time. This is
shown in Figure 5.7. Here, the calculated distance from all experimental runs is
plotted over the corresponding measurement time step as an average distance with
the 95% confidence interval. In the first 10 time steps, an average distance of about
20 centimetres is achieved. Then, this average distance increases to 30 centimetres,
with a deviation of about 10 centimetres. At time step 20, the average distance
quickly increases to 60 centimetres, and the corresponding deviation sees an increase
of about 10 centimetres as well. Between time steps 27 and 32, a short decrease
in distance can be observed, which is immediately followed by a steep increase in
the average distance to 1 metre. After that, an even steeper decrease to an average
distance of again 20 centimetres can be seen in the time steps 38 to 40.

With the provided information, the experiment data can be further set into context.

5.3.2 Evaluation

The yielded distances over time shown in Figure 5.7 can be mainly explained by
the path the robot takes in the environment. As described earlier, the path starts
by following the teammate around. Here, many laser measurement points hit the
teammate and the radius of the range sensor measurement is small. This leads to the
small resulting distance of about 20 centimetres. As the experiment progresses, the
teammate moves further away from the tracking robot and an object blocks a part
of the line of sight to the teammate. This leads to a decrease in laser measurements,
that hit the teammate, as well as a larger radius yielded by the range measurements.
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Figure 5.6: Standard Deviation of Latency per Run

Therefore, the yielded distance and its corresponding confidence increases both by
10 centimetres. Shortly before the line of sight between the robot and the teammate
is fully lost, the robot gets again closer to the teammate, which results in a dip
in distance to starting level accuracy. Thereafter, the line of sight is lost and the
yielded distance increases to an average of 60 centimetres, mainly calculated by the
range measurements and the old estimate, which restricts the range measurement
into a region near the point where the teammate was visible at last. Then, still in a
non line of sight scenario but slightly mixed with partially line of sight moment, the
yielded distance drops again. This is caused by the robot and teammate to partially
see each other for a brief moment and getting closer again and therefore the radius
of the range measurements get smaller, which both leads to an increase in accuracy.
The following steep increase in distance to an average of about 1 metre is correlated
to the duration of the full non line of sight scenario and a further stray of the robot
from the teammate. Here, the radius of the range measurements get larger again and
the old estimate, which limited the region where the teammate is expected to be,
gets blurred every time step according to the possible movement to a point, where
it does not restrict the area to a point where the teammate can be anywhere on
the radius. Lastly, the scenario turns into a full line of sight again and the yielded
distance has a steep decrease to about 20 centimetres again.
This last decrease in distance shows how well the reappearance of a teammate in line
of sight gets included into the result, and how the overall value of the pinpointing
ability of the laser measurements affects the yielded result. Further, the described
correlation of non line of sight scenarios and yielded distance provides information
about how the fusion method, fusing line of sight dependent and independent input
sources, dampens the impact of losing the line of sight on the teammate. Instead of
a sudden spike in distance, a gradually decreasing accuracy over time is achieved,
which is corrected at any time a line of sight scenario is established again.
The line of sight scenario in this experiment yields results of 20 centimetres. The
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Figure 5.7: Overall Accuracy: absolute distance over time between estimate and real robot

results for the non line of sight scenario are related to the size of the arena, which
determines how far the teammate can stroll away from the robot. Here, in this
experimental setup, a maximum average distance of about 1 metre is achieved.
Taking a look at the distance box plots, consisting of time steps in line of sight
and non line of sight, plotted over the whole run in Figure 5.5, the overall mean
distance value yielded is 33.85 centimetres. Notable here, the average distance lies
above most interquartile ranges and is only incorporated by them when considering
the standard deviation of 33.95 centimetres. This means this average gets strongly
influenced by some large outliers. These outliers may occur due to errors during the
experimental run, which differ in intensity and impact on the yielded distance and
thus result in a wider distribution and variance of these outlier values. In contrast,
the interquartile ranges have a small distribution and are skewed to the left, meaning
the more accurate the yielded values are, the less variance is in the distance data.
This also supports the assumption of errors of different intensity.
Hereby, to examine the relation between those distance outliers and the latency of the
input sources, the latency standard deviation was measured in Figure 5.6. Although
there are some significant deviations on latency of the input sources, it can not be
concluded that those latencies are related to the distance outliers because no run
with significant latency overlaps with a run of wide distributed and high distances. It
may lead to some small deviation in distances, but is not the cause of the significant
worse distance measurements. Therefore, other errors, except latencies, must have
happened and are to blame for high yielded distances. This good distance values on
runs with high latency deviation support the mutual compensation of faulty input
measurements expected for a fusion approach. Hence, it shows increased reliability
against latency errors.
In context to the former mentioned average yielded distances, the box plots of
probabilities in Figure 5.4 show a constant gradient of certainty established inside the
result grid, which means the uncertainty of the teammate location is always reduced.
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But additionally, the probability plots show a roughly constant difference between
the probabilities inside the robot box and the box around the maximum of the grid,
that may be caused by the placement of the robot box. The robot box is assumed
to be centred around the centre of the robot. But the yielded measurements of the
single inputs either detect the edge of the robot for the laser point input or detect
the range to the place of the mounted range sensor as described in Section 4.2.2, and
not the centre of the robot. This shift results in a possible offset of the robot box by
half the length of a robot box due to the laser sensor. This causes the robot box and
the box around the highest measurement to still overlap and increase the average
probability of the robot box, but it will never reach the maximum. Following this,
the yielded distances shown in the latter figures include this offset as well, because
the centre of the robot is used to calculate them. Therefore, the distances may be
smaller than measured by an offset about half the size of the used robots, which is
10 centimetres.
The average yielded distance over all experimental runs is slightly above the 30
centimetre requirement for successful tracking defined beforehand in Section 5.1.4.
Here, it is mentionable that line of sight scenarios easily exceed the requirement,
whereas non line of sight scenarios mostly can not fulfil the requirement, but prevent
the yielded distance from exponential increase, as soon as the line of sight is lost.
Additionally, by combining the information about the box offset, the line of sight
scenario yields even better results, which is transferred to non line of sight scenarios
by the old estimate. Therefore, the requirement for successful tracking is fulfilled.
A comparison with other state-of-the-art fusion approaches shows that the yielded
results can compete with values yielded by Kalman fusion with 0.05 and 0.14 metres
as translation error. In addition, most values yielded by the Bayes-Hempel Method
are located in the lower part of the interval range of values yielded by the deep
learning fusion and therefore can compete here as well. Both other fusion approaches
are described in Section 3.2. Notable here is that depending on the chosen sensor
inputs and on other aspects of the Bayes-Hempel Method like the grid cell size,
additional improvements on the result can be made.

5.4 Experiments for Influence of Sensor Sources
This experiment is conducted similar to the experiment on the overall Bayesian
fusion before. But this time, instead of an equal distribution of weights, the selected
source gets assigned a higher weight for every run. Here, the weights still add up to
a sum of 1. The selected source gets a weight of 0.5 assigned, whereas the weight of
every other source is equally distributed among the remaining 0.5. These weights
have severe effects on the probabilities within the fusion. A weighted sensor has
an almost five times higher effect on the result certainty of the grid, than a less
weighted one. Therefore, the influence of the sources on the result is increased or
decreased, depending on the current environment. This means, the information
about the environment yielded by the weighted sensor is significantly increased, but
the information yielded by the non-weighted sources are kept relevant. Hereby, it is
expected for sources using the LIDAR to perform better in line of sight scenarios,
whereas line of sight independent sources like ultra-wideband range are expected
to perform more constant overall and better in non line of sight scenarios. The
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weighting on the old estimate should make the result less affected by current changes
in the environment, and therefore smooth the result at the cost of a small delay.

5.4.1 Results

Weight on Laser Points

First, the relative probabilities inside the grid get compared like in the experiment
conducted before. The mean of average probability over all boxes is numerically
shown in Table 5.1. The mean probability outside the robot box is significantly

RobotBox OutsideBox MaxBox

8.28 ·10−5 6.47 ·10−6 2.39 ·10−4

Table 5.1: Weighted laser points: Average probabilities in parts of the grid

smaller than inside the robot box. The MaxBox square equal to the size of the
robot box around the maximum average likelihood in our grid estimate is still higher
than that of the robot box, but with incorporated standard deviation the robot box
probability is closer to that of the MaxBox than to that of the OutsideBox. This
means the probability inside the robot box is closer to the maximum likelihood than
to the minimum likelihood of residence of the teammate.
This shows that the average probability inside the robot box exceeds the threshold of
at least 50% higher probability values calculated with Equation 5.3. Therefore, the
teammate was found in every run and the distance was calculated with Equation 5.4.
The absolute distances in metres over every experimental run are shown as box plots
in Figure 5.8. Here, the interquartile ranges are mainly located in intervals below 50
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Figure 5.8: Weighted laser points: Absolute distance between calculated position and real robot

centimetres, except for 3 out of 38 runs. The distribution in the interquartile ranges
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for every run is not symmetrical, but heavily skewed to the left. This means 25% of
all values in the interquartile range are crowded in a significantly smaller range from
the first quartile to the median, and values above the median are wider distributed.
Therefore, more accurate distances gather inside smaller intervals and distances, that
are more inaccurate, are located in wider intervals. The mean over all distance values
yielded by all experimental runs is 33.46 centimetres and is shown as the horizontal
line in the figure. Hereby, the corresponding standard deviation is 33.67 centimetres.
The former box plots incorporate values yielded over the whole run, including change
from line of sight to non line of sight scenarios. Therefore, the experimental results
get plotted over time. This is shown in Figure 5.9. Here, the calculated distance
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Figure 5.9: Weighted laser points: Absolute distance over time between estimate and real robot

from all experimental runs is plotted over the corresponding measurement time step
as an average distance with the 95% confidence interval. The time axis is separated
into different sectors according to the line of sight scenario in these time steps. These
sectors are line of sight until time step 12, mixed line and non line of sight between
time steps 12 and 31 and non line of sight after time step 31 until time step 38.
In the first 12 time steps, an average distance of about 20 centimetres is achieved,
including little to no confidence deviation. Then, this average distance increases
by 5 centimetres, with a confidence deviation of about 10 centimetres. At time
step 20, the average distance quickly increases to about 55 centimetres, and the
corresponding confidence deviation sees an increase of up to 15 centimetres to an
overall 25 centimetres. Between time steps 27 and 30, a short decrease in average
distance back to 30 centimetres can be observed, maintaining a confidence deviation
of 25 centimetres. This is followed by an increase of the average distance to 85
centimetres and an increase in confidence deviation to 30 centimetres. After that
in time steps 38 to 40, the average distance again decreases to 20 centimetres, but
keeping the confidence deviation high with values of up to 20 centimetres. Further,
the mean and the corresponding standard deviation in metre for each earlier described
sector are shown in the following Table 5.2.
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LOS mean±σ in m Mixed mean±σ in m NLOS mean±σ in m

0.195±0.064 0.355 ± 0.374 0.619 ± 0.392

Table 5.2: Weighted laser points: Mean and standard deviation of sectors

Weight on Laser Area

First, the relative probabilities inside the grid get compared. The mean of average
probability over all boxes is numerically shown in Table 5.3. The mean probability

RobotBox OutsideBox MaxBox

9.12 ·10−5 6.51 ·10−6 2.27 ·10−4

Table 5.3: Weighted laser area: Average probabilities in parts of the grid

outside the robot box is significantly smaller than inside the robot box. The MaxBox
square equal to the size of the robot box around the maximum likelihood in our grid
estimate is still higher than that of the robot box, but with incorporated standard
deviation the robot box probability is closer to that of the MaxBox than to that of
the OutsideBox. This means the probability inside the robot box is closer to the
maximum likelihood than to the minimum likelihood of residence of the teammate.
This shows that the average probability inside the robot box exceeds the threshold of
at least 50% higher probability values calculated with Equation 5.3. Therefore, the
teammate was found in every run and the distance was calculated with Equation 5.4.
The absolute distances in metres over every experimental run are shown as box plots
in Figure 5.10. Here, the interquartile ranges are mainly located in intervals below
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Figure 5.10: Weighted laser area: Absolute distance between calculated position and real robot

50 centimetres, except for 1 out of 41 runs. The distribution in the interquartile
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ranges for every run is not symmetrical, but heavily skewed to the left. This means
25% of all values in the interquartile range are crowded in a significantly smaller
range from the first quartile to the median, and values above the median are wider
distributed. Therefore, more accurate distances gather inside smaller intervals and
distances, that are more inaccurate, are located in wider intervals. The mean over
all distance values yielded by all experimental runs is 32.45 centimetres and is shown
as the horizontal line in the figure.
The former box plots incorporate values yielded over the whole run, including change
from line of sight to non line of sight scenarios. Therefore, the experimental results
get plotted over time. This is shown in Figure 5.11. Here, the calculated distance
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Figure 5.11: Weighted laser area: Absolute distance over time between estimate and real robot

from all experimental runs is plotted over the corresponding measurement time step
as an average distance with the 95% confidence interval. The time axis is separated
into different sectors according to the line of sight scenario in these time steps. These
sectors are line of sight until time step 12, mixed line and non line of sight between
time steps 12 and 31 and non line of sight after time step 31 until time step 38.
In the first 10 time steps, a distance of slightly below 20 centimetres and slowly
increasing to above 20 centimetres resulting in an average distance of about 20
centimetres is achieved, including 2 to 5 centimetres deviation. Then at time step 13,
this average distance increases to 30 centimetres at time step 17, with a maximum
deviation of about 10 centimetres. At time step 20, the average distance has a small
dip to 20 centimetres and then quickly increases to about 60 centimetres, and the
corresponding deviation sees an increase to an overall deviation of 20 centimetres
at the peak. Between time steps 25 and 32, a short decrease in average distance
back to 20 centimetres can be observed, maintaining a deviation of 20 centimetres.
This is followed by a steep increase of the average distance to 95 centimetres, with
little to no deviation during the increase, resulting in a maximum deviation of 20
centimetres at time step 37. After that in time steps 38 to 41, the average distance
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again decreases to 20 centimetres, but keeping the deviation high with values of up
to 20 centimetres. Further, the mean and the corresponding standard deviation in
metre for each earlier described sector are shown in the following Table 5.4.

LOS mean±σ in m Mixed mean±σ in m NLOS mean±σ in m

0.2 ±0.074 0.328 ±0.313 0.559 ±0.376

Table 5.4: Weighted laser area: Mean and standard deviation of sectors

Weight on Range

First, the relative probabilities inside the grid get compared. The mean of average
probability over all boxes is numerically shown in Table 5.5. The mean probability

RobotBox OutsideBox MaxBox

9.40 ·10−5 6.45 ·10−6 2.47 ·10−4

Table 5.5: Weighted range: Average probabilities in parts of the grid

outside the robot box is significantly smaller than inside the robot box. The MaxBox
square equal to the size of the robot box around the maximum likelihood in our grid
estimate is still higher than that of the robot box, but with incorporated standard
deviation the robot box probability is closer to that of the MaxBox than to that of
the OutsideBox. This means the probability inside the robot box is closer to the
maximum likelihood than to the minimum likelihood of residence of the teammate.
This shows that the average probability inside the robot box exceeds the threshold of
at least 50% higher probability values calculated with Equation 5.3. Therefore, the
teammate was found in every run and the distance was calculated with Equation 5.4.
The absolute distances in metres over every experimental run are shown as box plots
in Figure 5.12. Here, the interquartile ranges are mainly located in intervals below
50 centimetres, except for 1 out of 41 runs. The distribution in the interquartile
ranges for every run is not symmetrical, but heavily skewed to the left. This means
25% of all values in the interquartile range are crowded in a significantly smaller
range from the first quartile to the median, and values above the median are wider
distributed. Therefore, more accurate distances gather inside smaller intervals and
distances, that are more inaccurate, are located in wider intervals. The mean over
all distance values yielded by all experimental runs is 30.82 centimetres and is shown
as the horizontal line in the figure.
The former box plots incorporate values yielded over the whole run, including change
from line of sight to non line of sight scenarios. Therefore, the experimental results
get plotted over time. This is shown in Figure 5.13. Here, the calculated distance
from all experimental runs is plotted over the corresponding measurement time step
as an average distance with the 95% confidence interval. The time axis is separated
into different sectors according to the line of sight scenario in these time steps. These
sectors are line of sight until time step 12, mixed line and non line of sight between
time steps 12 and 31 and non line of sight after time step 31 until time step 38. In the
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Figure 5.12: Weighted range: Absolute distance between calculated position and real robot

first 15 time steps, an average distance of about 20 centimetres is achieved, including
2 to 5 centimetres deviation. Then, this average distance increases by 10 centimetres,
with a deviation of about 10 centimetres. At time step 20, the average distance
shortly decreases to 20 centimetres before a quick increase to about 50 centimetres.
Hereby, the corresponding deviation stays the same. Between time steps 24 and 31,
a decrease in average distance back to 20 centimetres can be observed, but partly
raising the deviation to 20 centimetres. From time step 31, this is followed by a
steep increase of the average distance to 1 metre. During this increase, the deviation
decreases to 5 centimetres, and results at 15 centimetres at the end of it. After that
in time steps 38 to 41, the average distance again decreases to below 20 centimetres,
and the deviation decreases to 10 centimetres at the end. Further, the mean and
the corresponding standard deviation in metre for each earlier described sector are
shown in the following Table 5.6.

LOS mean±σ in m Mixed mean±σ in m NLOS mean±σ in m

0.188 ±0.083 0.308 ±0.287 0.548 ±0.352

Table 5.6: Weighted range: Mean and standard deviation of sectors

Weight on Old Estimate

First, the relative probabilities inside the grid get compared. The mean of average
probability over all boxes is numerically shown in Table 5.7. The mean probability
outside the robot box is significantly smaller than inside the robot box. The MaxBox
square equal to the size of the robot box around the maximum likelihood in our grid
estimate is still higher than that of the robot box, but with incorporated standard
deviatio the robot box probability is closer to that of the MaxBox than to that of
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Figure 5.13: Weighted range: Absolute distance over time between estimate and real robot

RobotBox OutsideBox MaxBox

9.10 ·10−5 6.45 ·10−6 2.37 ·10−4

Table 5.7: Weighted old estimate: Average probabilities in parts of the grid

the OutsideBox. This means the probability inside the robot box is closer to the
maximum likelihood than to the minimum likelihood of residence of the teammate.
This shows that the average probability inside the robot box exceeds the threshold of
at least 50% higher probability values calculated with Equation 5.3. Therefore, the
teammate was found in every run and the distance was calculated with Equation 5.4.
The absolute distances in metres over every experimental run are shown as box plots
in Figure 5.14. Here, the interquartile ranges are mainly located in intervals below
50 centimetres, except for 1 out of 41 runs. The distribution in the interquartile
ranges for every run is not symmetrical, but heavily skewed to the left. This means
25% of all values in the interquartile range are crowded in a significantly smaller
range from the first quartile to the median, and values above the median are wider
distributed. Therefore, more accurate distances gather inside smaller intervals and
distances, that are more inaccurate, are located in wider intervals. The mean over
all distance values yielded by all experimental runs is 31.72 centimetres and is shown
as the horizontal line in the figure.
The former box plots incorporate values yielded over the whole run, including change
from line of sight to non line of sight scenarios. Therefore, the experimental results
get plotted over time. This is shown in Figure 5.15. Here, the calculated distance
from all experimental runs is plotted over the corresponding measurement time step
as an average distance with the 95% confidence interval. The time axis is separated
into different sectors according to the line of sight scenario in these time steps. These
sectors are line of sight until time step 12, mixed line and non line of sight between
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Figure 5.14: Weighted old estimate: Absolute distance between calculated position and real robot

time steps 12 and 31 and non line of sight after time step 31 until time step 38. In the
first 17 time steps, an average distance of about 20 centimetres is achieved, including
little to no deviation. Then, the average distance increases shortly to 30 centimetres
with a deviation of about 10 centimetres, but immediately decreases again to 20
centimetres with minimal deviation. At time step 22, the average distance quickly
increases to about 60 centimetres, and the corresponding deviation sees an increase
to an overall deviation of 15 centimetres. Between time steps 25 and 31, a short
decrease in average distance back to 20 centimetres can be observed, maintaining a
deviation of 15 centimetres. This is followed by an increase in the average distance
to 1 metre and an increase in deviation to 30 centimetres at the top. After that in
time steps 38 to 41, the average distance again decreases to below 20 centimetres,
but simultaneously decreasing the deviation to 5 to 10 centimetres. Further, the
mean and the corresponding standard deviation in metre for each earlier described
sector are shown in the following Table 5.8.

LOS mean±σ in m Mixed mean±σ in m NLOS mean±σ in m

0.177 ±0.066 0.308 ±0.314 0.576 ±0.358

Table 5.8: Weighted old estimate: Mean and standard deviation of sectors

5.4.2 Evaluation

In the following, the results gathered before will be evaluated and conclusions about
this will be drawn. At first, the probabilities of each box get compared and are
therefore summarized and shown in Table 5.9. As you can see here, the robot box
means over every run just differ slightly for each weighting because the changing
line of sight scenarios are incorporated inside these values and therefore compensate
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Figure 5.15: Weighted old estimate: Absolute distance over time between estimate and real robot

Weight on
RobotBox
mean(10−5)

OutsideBox
mean(10−6)

MaxBox
mean(10−4)

Laser Points 8.28 6.47 2.39
Laser Area 9.12 6.51 2.27
Range 9.40 6.45 2.47
Old Estimate 9.10 6.45 2.37

Table 5.9: Influence of weighting on average probabilities in boxes

the expected strengths and weaknesses of each sensor input. Notable here is the
average laser points probability inside the robot box, which is the lowest of all
weighting experiments and therefore spans the biggest interval between the robot
box probability and the maximum box probability. This increased gap might be
caused by the measurement offset of the laser range detector between the edge and
centre of an object, described in Section 4.2.2. It is more significant because of more
weight on those affected measurements.

Further, it can be seen, that the yielded mean probabilities of the robot box for all
weightings always exceed the threshold of 50% higher values than the probabilities
outside the robot box and are closer to the maximum probability of the grid. Hence,
for all weightings, the teammate was found, and the distances were calculated.
Table 5.10 shows the mean, the standard deviation and the maximum value of
the 99% confidence interval of the yielded distance values grouped by line of sight
scenarios. Here, the effects of every weighting of the inputs on the yielded distances
can be seen and analysed.
The experiment with weights on the laser points yields best results in a line of sight
scenario as expected, but falls off as soon as the line of sight is lost. It performs worst
for the mixed and the non line of sight scenario of all experiments, and only achieves
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Weight on
LOS Mixed NLOS

mean
±σ (m)

max
99%

mean
±σ (m)

max
99%

mean
±σ (m)

max
99%

Laser Points
0.195
±0.064

0.203 m
0.355
±0.374

0.392 m
0.619
±0.392

0.691 m

Laser Area
0.2

±0.074
0.208 m

0.328
±0.313

0.358 m
0.559
±0.376

0.625 m

Range
0.188
±0.083

0.197 m
0.308
±0.287

0.335 m
0.548
±0.352

0.607 m

Old Estimate
0.177
±0.066

0.184 m
0.308
±0.314

0.338 m
0.576
±0.358

0.634 m

Table 5.10: Influence of weighting on distances

a maximum value of 39.2 and 69.1 centimetres with 99% confidence. Contradictory
to the expectation, it performs second worst in a line of sight scenario as well. Only
the standard deviation in the line of sight scenario outperforms all other experiments,
which indicates accurate results with a kind of offset error. Here, as mentioned
before, the measurements are influenced by the offset of the sensor readings and yield
increased distances. Therefore, this experiment will perform better in a line of sight
environment than what can be shown with the results of the evaluation metric here
up to half the size of tracked teammate, in this setup 10 centimetres.
The weight on laser area experiment yields the worst results in line of sight and is
subject to the sensor reading offset as well. But instead of pinpointing the location
of the teammate like the laser sensor points input, it only reduces the uncertainty of
residence of the teammate on the whole grid, even if no line of sight on the teammate
is given. Therefore, the distances yielded in the mixed and non line of sight scenario
are more accurate than with weight on the laser points input. In a mixed environment,
it performs only slightly worse than the range and old estimate experiment, and in
non line of sight it yields even better mean and maximum values with 99% confidence
than the old estimate experiment. Hence, the uncertainty reduction is of value over
all scenarios by excluding possible locations and therefore increasing the certainty in
other parts of the grid.
With weight on the range input, the yielded distances excel mainly in a non line
of sight scenario as expected, with a 99% confidence maximum value of slightly
above 60 centimetres. But also in mixed and line of sight, the results are best to
second best among the experiments, with values yielded with 99% confidence of 33.5
centimetres at max in mixed and 19.7 centimetres at max in line of sight. The range
sensor is accurate but is not able to locate the teammate on its own and therefore
needs another sensor to locate it exactly. For line of sight this is done by the laser
points input and for non line of sight the possible residence area is limited by the old
estimate. Hence, with help of other inputs, the universally good range input can be
accurate on all sight scenarios.
With weights on the old estimate input, overall good results are yielded. Here, the
result from the previous time step get emphasized and so all other inputs are used
with equal weight and the results are based on the measurements of those but with
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a delay, which can be seen in the changes in distance measurements some time
after the sight scenario changes in Figure 5.15. Therefore, it smooths pinpointed
changes of the environment for more precision, which is given within the line of sight
scenario, and gets worse if the location can not be pinpointed like in a non line of
sight environment as the grid is blurred to a point of equal probability. The accuracy
of the result in such a case scales with the size of the blur, which is linked to the
velocity of change and the mentioned delay.
In summary, it is shown, that all inputs have different strengths and weaknesses are
so susceptible to different environments like line of sight and non line of sight. To
maximize the effectiveness of the fusion and each input, it is important to adapt
different inputs and weightings to the current environment. For example, it is a good
practice to emphasize the range input if more objects are present, which interrupt
the line of sight. Hence, for each application, it is best to adjust the inputs to the
needs of the corresponding environment. Therefore, the requirement of adaptability
described in Section 5.1.4 was successfully verified.

5.5 Experiments simulating a fault on the sensors
This experiment is conducted similar to the experiment on Bayesian Fusion, but
with simulated faults or errors on the sensor inputs, which are likely to happen
in a real scenario. This is done by adding more Gaussian noise on each sensor
measurement as a value-correlated error, completely neglect an input source for
failure or overwrite random cells in the result with high values as non value-correlated
error. For all failure scenarios, the failure occurrence probability and the related
duration will be determined as described in Section 4.2.4. Hereby, the influence of
these faults and errors on the robustness and accuracy of the result can be examined.
And furthermore, it can be checked how big the faults can get while a feasible
level of accuracy is still achieved. First, the impact of a neglect of input sources
will be examined. Hereby, input sources will be selected to be neglected for every
measurement time step. Second, a value-correlated error on the input sources will
be generated for every time step as well. Third, a non value-correlated error will be
generated on the inputs. The results can be compared against other types of faults
and against the results of the experiment, which evaluates the overall accuracy of
the fusion with no added faults.

5.5.1 Results

Missing Source

In the following, the results of the conducted experiment with missing sensor inputs
are shown. First, the relative probabilities inside the grid get compared. This is
shown in Figure 5.16. This figure contains box plots showing the average likelihood
in the result grid on a log-scale over every experimental run. The left box plots
show the average probabilities inside the robot box per run, and the dashed line
marks the mean over all data. Here, the mean of the probabilities is 9.88 · 10−5.
Whereby, the associated standard deviation is 7.61 · 10−5. The box plots in the
middle show the average probability outside the pre-defined robot box per run, with
a dashed line as mean. The overall mean has a value of 6.36 ·10−6 and a standard
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Figure 5.16: Missing Sensor: Average probability in robot box, outside robot box, and around max
probability

deviation of 9.01 ·10−7. The overall deviation and thus also the interquartile ranges
are significantly smaller than inside the robot box and are located far below in a
way that the yielded values do not overlap once. Here, the calculated mean over
all average probabilities inside the robot box is over 15 times larger than the mean
calculated outside the robot box. The box plot on the right shows the average
probability in a square equal to the size of the robot box with the maximum average
probability in our grid estimate. The average probabilities in the maximum box have
a mean value of 2.03 ·10−4 with an associated standard deviation of 1.19 ·10−4. It
can be seen, that the overall mean is still higher than that of the robot box, but
the intervals of the yielded values are overlapping at some points. This means, the
average probability inside the robot box is closer to the maximum likelihood than to
the minimum likelihood of residence.

These plots show that the mean of average probabilities inside the robot box exceeds
the threshold of at least 50% higher probability values than outside the robot box
calculated with Equation 5.3. Therefore, the teammate was found in every run and
the distance was calculated with Equation 5.4. The absolute distances in metres
over every experimental run are shown as box plots in Figure 5.17. Here, only
13 out of 41 interquartile ranges are not fully located below 50 centimetres. The
interquartile ranges of those runs differ in value and the third quartile can reach up
to about 1.3 metres at maximum. The distribution in the interquartile ranges is not
symmetrical for all runs, but skewed to the left. This means 25% of all values in the
interquartile range are crowded in a significantly smaller range from the first quartile
to the median, and values above the median are wider distributed. Therefore, more
accurate distances gather inside smaller intervals and distances. Distances, that are
more inaccurate, are located in wider intervals. The mean over all distance values
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Figure 5.17: Missing Sensor: Absolute distance between calculated position and real robot

yielded by all experimental runs is 0.44 metres with a standard deviation of 0.494
metres overall. The mean is shown as the dashed horizontal line in the figure.

A latency measurement, shown in Figure 5.18, can be used to examine the correlation
between the latency behaviour of the input sources and the distances per run and
in this case shows the neglection of input sources through the Weibull distribution
as described in Section 4.2.4. The standard deviations of latency range from 0 to
about 2.4 seconds. Here, most values are located around in the interval from 0.5 to
1.5 seconds. Therefore, the latency is below a time step in this experiment, which is
about 2 seconds. This means the failure occurrence as well as the failure duration
on the inputs chosen by the Weibull distribution were successful. The failures were
distributed among the different input sources. Hereby, inputs are alternating to fail
or not, which indicates the failure of at least 1 input in every time step and hence
the possibility of failure of multiple inputs at the same time step and most likely
on run 18 with all input latencies above 2 seconds. Run 5, 12 and 15 are the ones
to likely not contain multiple failures at the same time, because one or two inputs
have a value of approximately 0. Here, run 18 with all input latency deviations
above 2 seconds yields no significant increased distance values. Run 5, 12 and 15
yield distances with interquartile ranges below the overall mean, but are only slightly
better than run 18.

Value-correlated Faults

In the following, the results of the conducted experiment with value-correlated faults
are shown. First, the relative probabilities inside the grid get compared. This is
shown in Figure 5.19. This figure contains box plots showing the average likelihood
in the result grid on a log-scale over every experimental run. The left box plots show
the average probabilities inside the robot box per run, and the dashed line marks
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Figure 5.18: Missing Sensor: Standard Deviation of Latency per Run

the mean over all data. Here, the mean of the probabilities is 7.48 ·10−5. Whereby,
the associated standard deviation is 6.02 ·10−5. The box plots in the middle show
the average probability outside the pre-defined robot box per run, with a dashed line
as mean. The overall mean has a value of 6.35 ·10−6 and a standard deviation of
8.6 ·10−7. The overall deviation and thus also the interquartile ranges are significantly
smaller than inside the robot box and are located far below in a way that the yielded
values do not overlap once. Here, the calculated mean over all average probabilities
inside the robot box is over 11 times larger than the mean calculated outside the
robot box. The box plot on the right shows the average probability in a square
equal to the size of the robot box with the maximum average probability in our
grid estimate. The average probabilities in the maximum box have a mean value of
1.86 ·10−4 with an associated standard deviation of 1.04 ·10−4. It can be seen, that
the overall mean is still higher than that of the robot box, but the intervals of the
yielded values are overlapping. This means, the average probability inside the robot
box is closer to the maximum likelihood than to the minimum likelihood of residence.

These plots show that the mean of average probabilities inside the robot box exceeds
the threshold of at least 50% higher probability values than outside the robot box
calculated with Equation 5.3. Therefore, the teammate was found in every run and
the distance was calculated with Equation 5.4. The absolute distances in metres over
every experimental run are shown as box plots in Figure 5.20. Here, only 11 out of 41
runs have interquartile ranges ranging above 50 centimetres. The interquartile ranges
of those runs differ in value, and the third quartile can reach up to about 1.4 metres
at maximum. The distribution in the interquartile ranges is not symmetrical for all
runs, but skewed to the left, except for the last conducted run, which is skewed to
the right. This means for almost all runs, 25% of all values in the interquartile range
are crowded in a significantly smaller range from the first quartile to the median, and
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Figure 5.19: Value-correlated Fault: Average probability in robot box, outside robot box, and
around max probability

values above the median are wider distributed. Therefore, more accurate distances
gather inside smaller intervals and distances. Distances, that are more inaccurate,
are located in wider intervals. The mean over all distance values yielded by all
experimental runs is 0.426 metres with a standard deviation of 0.447 metres overall.
The mean is shown as the dashed horizontal line in the figure.
The corresponding latency measurement per run, shown in Figure 5.21, can be used
to examine correlations between the latency behaviour of the input sources and the
distances per run. In this case, only small latencies should occur. The standard
deviations of latencies range from mostly 0 to about 1 second, except for one outlier
on run 23. Therefore, there are only small latencies to the input sources, which have
no significant influence on the yielded distances, even for run 23 with the outlier.

Non Value-correlated Faults

In the following, the results of the conducted experiment with non value-correlated
faults are shown. First, the relative probabilities inside the grid get compared. This
is shown in Figure 5.22. This figure contains box plots showing the average likelihood
in the result grid on a log-scale over every experimental run. The left box plots
show the average probabilities inside the robot box per run, and the dashed line
marks the mean over all data. Here, the mean of the probabilities is 9.68 · 10−5.
Whereby, the associated standard deviation is 7.99 · 10−5. The box plots in the
middle show the average probability outside the pre-defined robot box per run, with
a dashed line as mean. The overall mean has a value of 6.39 ·10−6 and a standard
deviation of 9.58 ·10−7. The overall deviation and thus also the interquartile ranges
are significantly smaller than inside the robot box and are located far below in a
way that the yielded values do not overlap once. Here, the calculated mean over
all average probabilities inside the robot box is over 15 times larger than the mean
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Figure 5.20: Value-correlated Fault: Absolute distance between calculated position and real robot

calculated outside the robot box. The box plot on the right shows the average
probability in a square equal to the size of the robot box with the maximum average
probability in our grid estimate. The average probabilities in the maximum box have
a mean value of 2.36 ·10−4 with an associated standard deviation of 1.04 ·10−4. It
can be seen, that the overall mean is still higher than that of the robot box, but the
intervals of the yielded values are overlapping. This means, the average probability
inside the robot box is closer to the maximum likelihood than to the minimum
likelihood of residence.
These plots show that the mean of average probabilities inside the robot box exceeds
the threshold of at least 50% higher probability values than outside the robot box
calculated with Equation 5.3. Therefore, the teammate was found, and the distances
were calculated for every run with Equation 5.4. The absolute distances in metres
over every experimental run are shown as box plots in Figure 5.23. Here, only 5 out
of 41 runs have interquartile ranges ranging above 50 centimetres. The interquartile
ranges of those runs differ in value. 4 of those runs have the third quartile located
below 1 metre, and only run 22 reaches up to 2.5 metres. The distribution in the
interquartile ranges is not symmetrical for all runs, but heavily skewed to the left,
except for run 22 and 36, which are skewed to the right. This means for almost
all runs, 25% of all values in the interquartile range are crowded in a significantly
smaller range from the first quartile to the median, and values above the median are
wider distributed. Therefore, more accurate distances gather inside smaller intervals
and distances. Distances, that are more inaccurate, are located in wider intervals.
The mean over all distance values yielded by all experimental runs is 0.371 metres
with a standard deviation of 0.442 metres overall. The mean is shown as the dashed
horizontal line in the figure.
The corresponding latency measurement per run, shown in Figure 5.24, can be used
to examine correlations between the latency behaviour of the input sources and the
distances per run. In this case, only small latencies resulting from some sort of errors



5.5. Experiments simulating a fault on the sensors 59

0 5 10 15 20 25 30 35 40
Runs

0

1

2

3

4

5

6

7

St
an

da
rd

 D
ev

ia
tio

n 
in

 n
s

1e9 Latency STD of Inputs per Run
Points
Area
Range

Figure 5.21: Value-correlated Fault: Standard Deviation of Latency per Run

should occur, as well. The standard deviations of latencies range from mostly 0
to about 1 second, except for one outlier on run 1, 2, 3 and 6. Therefore, there
are mainly small latencies to the input sources, which have no significant or visible
influence on the yielded distances, even for the outlier runs.

5.5.2 Evaluation

In the following, the gathered results will be evaluated and conclusions about this
will be drawn. At first, the probabilities of each box get compared and are therefore
summarized and shown in Table 5.11. Here, for each fault type the mean of the

Fault Type
RobotBox
mean(10−5)

OutsideBox
mean(10−6)

MaxBox
mean(10−4)

Missing 9.88 6.36 2.03
Value-correlated 7.48 6.35 1.86
Non Value-correlated 9.68 6.39 2.36

Table 5.11: Influence of fault types on average probabilities in boxes

average probabilities inside the robot box, outside the robot box and inside the
maximum box is shown. It can be seen, that the mean outside the robot box is
almost the same for every fault type. Though, the mean inside the robot box and
the maximum box differ significantly in value for each fault type. Value-correlated
faults yield the lowest mean value inside the robot box and also inside the correlated
maximum box. With a difference of over 2 · 10−5 to the lowest, the mean inside
the robot box yielded by non value-correlated faults is the second highest of the 3
fault types, but has the highest mean inside the maximum box of them. The mean
inside the robot box yielded while inputs are missing has the highest value of all fault
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Figure 5.22: Non Value-correlated Fault: Average probability in robot box, outside robot box, and
around max probability

types. This shows that despite each type of fault, the probabilities inside the grid
still have a significant gradient. Even the smallest mean value inside the robot box
yielded by the value-correlated fault type is 11 times higher than the mean of average
probabilities outside of it. Therefore, the uncertainty inside the whole certainty grid
is greatly reduced for all tested fault types.
With all values exceeding the threshold of 50%, the absolute distances were calculated
and summarized in Table 5.12. The mean distance value yielded while missing some

Fault Type mean (m) ±σ (m)

Missing 0.44 0.494
Value-correlated 0.426 0.447
Non Value-correlated 0.371 0.442

Table 5.12: Influence of fault types on average distances

inputs is the highest value among the 3 fault types, with 44 centimetres. The
associated standard deviation is also the highest among them. Also, the highest
number of runs have an interquartile range exceeding a distance of 0.5 metres. Those
values can be explained through the distribution of failure shown in the results
section. By neglecting an input, the result need to be calculated using the remaining
inputs, even if the most accurate and informative input at that time step is missing.
Further, as the distribution shows, it is possible for two or more sensors to fail during
the same time step, leaving one or even zero inputs for the calculation of the result.
This counteracts the benefits gained by a fusion of different sensors and renders the
result more inaccurate with each missing input. The remaining inputs still locate
the teammate inside the grid, resulting in a high mean of average probability values,
but lack accuracy. Therefore, the missing of an input source has the most impact on
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Figure 5.23: Non Value-correlated Fault: Absolute distance between calculated position and real
robot

the result accuracy out of the 3 fault types combining low accuracy, with still high
confidence in knowledge of residence.
Value-correlated faults yield the second-best mean distance of 42.6 centimetres and
associated standard deviation of 44.7 centimetres. Here, the faults imposed on the
different input sources impact the result not quite as much as missing inputs. This
can be explained as follows. The value-correlated faults impose quite high errors on
the inputs, but the fusion of multiple inputs, dampens the effects of those errors.
The benefits gained from a sensor fusion are still applicable, and thus the mean
distance is more accurate despite high errors than with missing inputs. The low
mean of average probabilities inside the robot box results from the application of
the fault. With the increase in the Gaussian error distribution, more cells in the
certainty grid inherit higher probability values, spreading the probability above the
grid. As the error increases, more cells of the grid get affected and the probabilities
in each cell shrink, resulting in a lower mean of average probabilities inside the robot
box. Hence, value-correlated faults decreases the accuracy of the yielded result,
while simultaneously reducing the confidence in knowledge of the residence of the
teammate, which is of advantage over a high confidence with bad accuracy.
The best mean distance value of 37.1 centimetres is yielded with non value-correlated
faults. The associated standard deviation of 44.2 centimetres is also the best of all
fault types. This fault type yields a significant better value than the other types,
with a difference of over 5 centimetres in mean distance value, while also maintaining
a high mean average probability value inside the robot box. This means non value-
correlated faults decrease the accuracy the least among all tested faults and contain
a high confidence in knowledge of the teammate’s residence. The benefits of the
sensor fusion can be seen here. The error, that was added on the inputs, have only
low influence on the yielded result because for every fused input, the influence of this
error is reduced to no significance and the non-faulty measurements get emphasized.
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Figure 5.24: Non Value-correlated Fault: Standard Deviation of Latency per Run

Outlying distance values for all fault types in this experiment, may be due to other
failures in the simulation as well as through localization errors of the robot leading
to failures in the measurements. Unusual high latency values are possibly due to an
input missing for multiple sequential time steps.
In summary, this experiment clearly shows, that faults have different influence on
the yielded results as described above. Every fault type yields values worse than
non-faulty ones from the overall accuracy experiment, with 10.2 centimetres to 3.3
centimetres difference in mean distance. Nevertheless, the mean distances of the
fault experiments are still kept in a feasible range, and for each applied fault type, a
significant gradient of probabilities in the certainty grid existed. Therefore, it can be
seen, that the fusion approach is to a certain degree robust against errors. Hereby,
the susceptibility to faults varies from fault type to fault type, with being most prone
to the complete failure of inputs and least prone to non value-correlated faults.

5.6 Summary
The conducted experiments were done to examine the performance of the sensor
fusion approach using the Bayes Theorem.
In this context, first, an experiment was done investigating the precondition of
stochastic independence for using the Bayes Theorem. Here, all input sources are
linear independent to each other and additionally one can be clearly seen as stochastic
independent. The other two do not fulfil the requirement for stochastic independence.
Nevertheless, this supports the usage of naive Bayes assumptions for the use with
the Bayes theorem because in a robotic use case mutual deviation from stochastic
independence are not preventable and are likely not to largely interfere with the
results.
Second, further experiments were conducted to provide insight on the performance and
specifically on, whether the requirements for successful teammate tracking, established
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for this use case in Section 5.1.4, can be fulfilled. The accuracy requirement of 30
centimetres, with a deviation of 15 centimetres, is evaluated in experiment Section
5.3. Overall, the requirement can be seen as fulfilled. In line of sight scenarios, a
significantly lower distance and standard deviation is measured. Combined, with
the whole experimental run, which is dependent on used inputs and environment,
a slightly higher distance mean of 33.8 centimetres is measured. But, it is shown
in this experiment, that by combining inputs using this approach the accuracy can
be highly improved and by improving some experimental designs the mean distance
would exceed the requirement.
The requirement of adaptability to different use case can also be seen as fulfilled. Here,
different weightings on different input sources, shift the yielded values in favour of
certain environmental properties. Optical sensors favour more line of sight scenarios,
whereas ultra-wideband sensors are more versatile in obstacle rich environments, and
additionally emphasizing the results from old time steps smooth the current result in
a dynamic environment. It is clearly shown by the conducted experiment in Section
5.4 that weighting on the inputs adapt the approach to different use cases.
The last requirement of robustness is evaluated in experiment Section 5.5 by the
application of different faults. It is shown that, despite different types of faults, a
gradient in certainty and thus a reduction in uncertainty exists for all tested fault
types. The overall measured accuracy is decreased by applying different faults, but
the value differs for each type of fault. The missing of inputs yields the highest
decrease, value-correlated faults have a medium decrease on accuracy but the highest
decrease in certainty, and non value-correlated faults yield values with the lowest
decrease in accuracy and are well compensated by the fusion.
In summary, the Bayes-Hempel Method achieves feasible results and is able to answer
the research questions. First, question RQ1 about a meaningful evaluation metric
to measure the result quality gets answered. Here, the metric consists of a relative
and an absolute part. The relative part evaluates the certainty in knowledge about
the position of the teammate. The absolute part then evaluates the distance error
between the calculated position and the actual one of the teammate. Hence, accuracy
and certainty in this accuracy gets combined in this metric. The metric suited to
evaluate the results, but it is not perfect as described in experiment 5.3 and can
be further developed to incorporate the effects of sensor properties, which leads
to even better evaluation results. Second, question RQ3 regarding the influence of
parameters is answered. The question is reflected by the requirement of adaptability.
Therefore, it can be said, that changing parameters greatly influences the approach
and increases the usability of the Bayes-Hempel Method in different environmental
settings. Third, question RQ4 concerning the robustness is also answered with the
requirement analysis. Hence, with usual occurring faults, the certainty, and the
accuracy is maintained to a certain degree. Hereby, it being most prone to the failure
of inputs, and least prone to non-value correlated faults. With the analysis of the
requirements and the answered questions, the overall question RQ2 classifying the
quantitative advantage over other state-of-the-art fusion approaches can be answered.
Though, no significant improvement in performance could be achieved, the Bayes-
Hempel Method is able to perform similarly to other approaches but with certain
benefits. On best conditions, the Bayes-Hempel Method yields translation errors of
around 0.2 metres. This can compete with results yielded by Kalman sensor fusions
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of 0.05 and respectively 0.14 metres, and are on an equal level with values yielded by
a deep learning fusion approach. Both other approaches are formerly described in
Section 3.2. The mentioned benefits of the Bayes-Hempel Method consist of a fast
adaptability to environmental changes, the ability to maintain spatial orientations
for each teammate during changes by mapping each teammate in a single certainty
grid, and an enhancement of the ability to combine sensors of different modalities.

The next chapter gives an overlook over this thesis and concludes the most important
findings and results. Further, an outlook on possible future work and improvements
is given.
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In this work, the question is answered, whether the application of a Bayesian sensor
fusion with modified certainty grids brings qualitative advantages and improvements
compared to latest works on other sensor fusion approaches. These approaches are
used for teammate tracking and localization in a robotic swarm environment.

After the clarification of the basics, the implementation of the introduced approach
is described. The modifications to basic certainty grids are presented. The grid
represents a discrete density function, which is used to estimate the position of a
teammate. The processing of the grid data is done by the Bayes-Hempel Method,
which utilizes the Bayes theorem to combine different MCGs produced by several
sensors. To validate this approach, different experiments are conducted. With those,
the quality of measurements, the robustness, and the adaptivity to different scenarios
considering preset requirements are investigated.

In summary, the approach yields feasible results satisfying the requirements and
the Research Questions 1, 2, 3 and 4 can be answered. On best conditions, a mean
distance error of 20 centimetres far below the requirement of 30 centimetres and on
average a mean distance error of 33.8 centimetres is achieved. This mainly depends
on the used sensors and the properties of the environment. With parameter changes,
an adaptability to this different environment properties and therefore to different use
cases can be achieved. In contrast to other state-of-the-art fusion approaches like
Kalman or deep learning, no significant improvement in performance, but similar
results, could be achieved. Nevertheless, the presented approach achieves a faster
adaptability to environmental changes and adds the ability to maintain spatial
orientations for each teammate during changes by mapping each teammate in a
single certainty grid. Furthermore, our sensor fusion enhances the ability to combine
sensors of different modalities.

Future Work

During the evaluation, different parts with potential for improvement were found.

We already introduce a compensation of data delays to get more accurate results.
Similar approaches could be used for other calculable inaccuracies, for example the
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deviation between the real robot position and the measured outer boundaries. Those
occur because the LIDAR sensor only senses these outer boundaries. As in swarms
usually only one type of robot is used, information like the size and form of the
robots are known and could be used to eliminate this offset.

Additionally, in swarms, most of the time more than 2 robots are used. Thus,
experiments with more than 2 robots would be beneficial as an extension of this
work.

Furthermore, a more accurate movement prediction of the teammate could be added
to concretize the probability distribution of the possible teammate position. By
analysing multiple old estimates yielded over a longer time, a movement path can be
reconstructed and extrapolated.

For all the experiments we assumed, that the robot know their position. In real-world
scenarios this is not often the case and different localization algorithms would be
used. This applies an additional error to the teammate tracking as it depends on
the own position. Further experiments on the interplay between localization and our
teammate tracking approach can provide insight for more realistic use cases.

In these use cases containing different environments, the Bayes-Hempel method
achieves good results, but the parameters need to be tuned manually. By using an
optimization algorithm, that adapts the parameters to the current environment, a
better usability and probably an increased quality of results would be achieved. In
relation to this, a sensitivity analysis on sensor weightings can be conducted to gain
further insights into dependencies.
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