
Nico Winkelsträter

Evolutional Configuration
Optimization of Autonomous
Quadcopters





Intelligent Cooperative Systems
Computational Intelligence

Evolutional Configuration Optimization of
Autonomous Quadcopters

Master Thesis

Nico Winkelsträter

October 25, 2022

Supervisor: Prof. Sanaz Mostaghim

Advisor: Dr. Christoph Steup



Nico Winkelsträter: Evolutional Configuration Optimization of
Autonomous Quadcopters
Otto-von-Guericke Universität
Intelligent Cooperative Systems
Computational Intelligence
Magdeburg, 2022.



Contents

List of Figures III

List of Tables V

1. Introduction 1
1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3. Structure of this work . . . . . . . . . . . . . . . . . . . . . . . 2

2. Background 3
2.1. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2. Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2.1. Simulation of the FINken . . . . . . . . . . . . . . . . . 4
2.2.2. Sensor characteristics . . . . . . . . . . . . . . . . . . . . 6
2.2.3. Lift Simulation . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.4. Copter Guidance . . . . . . . . . . . . . . . . . . . . . . 6

2.3. Swarm Intelligence and Swarm Robotics . . . . . . . . . . . . . 7
2.3.1. Swarm Intelligence . . . . . . . . . . . . . . . . . . . . . 7
2.3.2. Swarm Robotics and Evolutionary Robotics . . . . . . . 8

2.4. Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . 9
2.4.1. Multi-objective Evolutionary Optimization . . . . . . . . 10

3. State of the Art and Related Work 13

4. Sensor Placement Optimization Using Co-Evolution (SPOC) 17
4.1. Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2. Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.1. Aggregation Quality . . . . . . . . . . . . . . . . . . . . 21

I



Contents

4.2.2. Motion Quality . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.3. Certainty . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3. Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3.1. Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.2. Mutation and Crossover . . . . . . . . . . . . . . . . . . 27
4.3.3. Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5. Implementation 31
5.1. Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1.1. Ensuring Fairness . . . . . . . . . . . . . . . . . . . . . . 32
5.1.2. Process Management . . . . . . . . . . . . . . . . . . . . 33

5.2. Gazebo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2.1. Communication . . . . . . . . . . . . . . . . . . . . . . . 35
5.2.2. Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3. Ardupilot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6. Experiments and Results 39
6.1. Evaluation Scenario . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2. Hyperparameter Exploration . . . . . . . . . . . . . . . . . . . . 40
6.3. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.4. Comparison With Reference Individuals . . . . . . . . . . . . . 47
6.5. Inspection of Solutions . . . . . . . . . . . . . . . . . . . . . . . 52

7. Conclusion and Future Work 59
7.1. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

A. Experiments and Results 63

Bibliography 75

II



List of Figures

1.1. 2D Copter Illustration . . . . . . . . . . . . . . . . . . . . . . . 1

2.1. Top and side view of the copter model . . . . . . . . . . . . . . 5
2.2. Flowchart of an evolutionary algorithm . . . . . . . . . . . . . . 9

4.1. Attraction and repulsion forces generated by the sensors . . . . 17
4.2. Examples of the attraction repulsion functions . . . . . . . . . . 18
4.3. Example of aggregation quality calculation . . . . . . . . . . . . 21
4.4. Example of the angles used for computing motion quality . . . . 22
4.5. Example of fitness scaling with multiple evaluations . . . . . . . 23
4.6. Flowchart of SPOC . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.7. Encoding of sensors and attraction repulsion parameters . . . . 26
4.8. Top-down view and sensor parameters . . . . . . . . . . . . . . 27
4.9. Distributions for Gaussian mutation . . . . . . . . . . . . . . . . 28

5.1. Communication structure of simulation environment . . . . . . . 31
5.2. Simulation timing . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3. Screenshot of Gazebo with multiple copters and sensors . . . . . 35
5.4. Sonar sensor implementation . . . . . . . . . . . . . . . . . . . . 36

6.1. Initial copter formation . . . . . . . . . . . . . . . . . . . . . . . 39
6.2. Results of hyperparameter exploration . . . . . . . . . . . . . . 40
6.3. Median fitness graph . . . . . . . . . . . . . . . . . . . . . . . . 44
6.4. Fitness distributions grouped by experiment parameter. . . . . . 45
6.5. Box plots of fitness of generation 150 . . . . . . . . . . . . . . . 46
6.6. Scatter plot of non-dominated individuals & reference individuals 48

III



List of Figures

6.7. Example flight paths, reference individual, ARI . . . . . . . . . 49
6.8. Example flight paths, reference individual, ARII . . . . . . . . . 50
6.9. Example flight paths, reference individual, ARIII . . . . . . . . 51
6.10. Flight paths from an individual of ARII 6 25 . . . . . . . . . . . 53
6.11. Sensor configuration of an individual from ARII 6 25 . . . . . . 54
6.12. Flight paths from an individual of ARI 5 10 . . . . . . . . . . . 55
6.13. Sensor configuration of an individual from ARII 5 10 . . . . . . 56
6.14. Flight paths from an individual of ARIII 6 10 . . . . . . . . . . 57
6.15. Sensor configuration of an individual from ARIII 6 10 . . . . . . 58

A.1. Example flight paths, reference individual, ARIII . . . . . . . . 65
A.2. Example flight paths, reference individual, ARII . . . . . . . . . 66
A.3. Example flight paths, reference individual, ARI . . . . . . . . . 67
A.4. Example flight paths, reference individual, ARIII . . . . . . . . 68
A.5. Example flight paths, reference individual, ARII . . . . . . . . . 69
A.6. Example flight paths, reference individual, ARI . . . . . . . . . 70
A.7. Example flight paths of solutions . . . . . . . . . . . . . . . . . 71
A.7. (cont.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
A.7. (cont.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.7. (cont.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

IV



List of Tables

2.1. Masses of the individual modeled copter components . . . . . . 5

3.1. Comparison of other works using EAs on robots . . . . . . . . . 15

6.1. Fixed parameter values used in the preliminary experiments . . 41
6.2. Hyperparameter values used in the preliminary experiments . . 42
6.3. Experimental parameters used for the experiments . . . . . . . . 42

A.1. Pre-Experiment parameter combinations . . . . . . . . . . . . . 63

V





1. Introduction

Figure 1.1.: 2D Illustration of the copter models with sensors used in the sim-
ulation

1.1. Motivation

Unmanned aerial vehicles (UAVs), including unmanned quadcopters, are very
flexible and are used in many applications. They are used in agriculture,
surveillance, forest fire monitoring, building inspection [18, 16, 23, 25] etc.

1



1. Introduction

Many of these applications could benefit from using a swarm of UAVs by
covering a lot of area more quickly, providing better signal-to-noise ratio by
using distributed sensing [24, p. 11] or higher fault tolerance. If it is clear in
advance that a particular task will deploy a swarm of UAVs, it is beneficial to
try to adapt and optimize the UAVs behavior and sensors to better suit the task
or save costs. Doing this can be a difficult task, and is also known as the design
problem [26, p. 48]. This work explores the feasibility of using evolutionary
algorithms to overcome the design problem for swarms of quadcopters.

1.2. Research Questions

The following research questions are proposed in this work:

RQ1 Is it possible to co-optimize structural and behavioral parameters of a
swarm of quadcopters performing an aggregation behavior using an evolution-
ary algorithm?

RQ2 Is it possible to perform this optimization in a fully automatic fashion?

RQ3 Is it possible to detect any impact of the structural parameters on the
behavioral parameters or vice versa?

RQ4 Can this method produce solutions which outperform solutions which
are manually designed by an expert?

1.3. Structure of this work

At first, Chapter 2 explains the background of the methods and techniques
used in the work. Chapter 3 presents some related works and the state of
the art. In Chapter 4 the working of Sensor Placement using Co-Evolution
(SPOC) and all of its parameters are explained. Chapter 5 then explains the
technical details of how SPOC is implemented. The experiments are explained,
and their results presented, in Chapter 6. Finally, the answer to the research
question is summarized and possible improvements of SPOC and future work
is discussed in Chapter 7.

2



2. Background

This chapter describes the three fundamental topics this thesis is based on:
Robot Simulation Framework, Swarm Intelligence and Evolutionary Algo-
rithms.

2.1. Terminology

This work deals with swarms as well as evolutional algorithms. As both topics
might use the term individual in different ways, it is important to differentiate
between the two. In Swarm Robotics or Swarm Intelligence, an individual is a
distinct member of the swarm. In evolutional algorithms, an individual is the
encoding or instantiation of a solution to the problem that is being optimized.

All swarms described in this work are of mostly homogeneous nature — except
the leader — and all members of the swarm are “assembled” identically as in-
structed by the solution to be evaluated. From the viewpoint of evolutionary
algorithms, one could speak of the whole swarm as an individual, as it repre-
sents one solution to the problem. Therefore, the term individual in this work
refers to a solution of an evolutional algorithm, while the parts of the swarm
will be referred to as robots or copters.

2.2. Simulation

This section explains the choice of Simulation Framework, how it works and
how it is configured for this thesis.

To facilitate the evaluation of individuals in the evolutionary algorithm, a
simulation framework is required because physical evaluation is infeasible be-
cause of high cost and time requirements. The simulation consists of two

3



2. Background

components: an autopilot and a physics simulator. Ardupilot1 is used as the
autopilot and Gazebo2 as the physics simulator.

Ardupilot is an open source autopilot, which is capable of piloting many types
of vehicles, including multi- and quad-copters. It is usually deployed on em-
bedded hardware installed in the vehicles themselves. This piece of embedded
hardware is typically also called autopilot. Ardupilot also supports running on
typical computers as Software In The Loop (SITL) for testing and simulation
purposes, and supports multiple physics simulators for providing flight data.
It is extensible with custom flight modes, which is made use of in this work to
implement the swarm behavior used for evaluation.

Gazebo is an open source physics and robotics simulator and is also one of the
supported simulation backends for Ardupilot SITL. It uses the Open Dynamics
Engine (ODE) as physics solver and therefore offers rigid body physics and
collision detection. With a plugin, Gazebo can simulate the lift and drag
created by the rotor blades Together with modelling the torque applied to the
copter by the changing velocity of the rotor blades, this is sufficient to represent
the mode of movement of real quadcopters. Differential thrust of the motors
can control the yaw, pitch, and roll axis of the copter either by a difference in
lift (pitch and roll) or by a difference in torque (yaw). Additionally, Gazebo
offers different sensors, including a distance sensor with a conical field of view
which can be used to approximate the sonar distance sensors used on the
FINken. With these components, Gazebo offers everything that is required
to model the FINken quadcopter dynamics and sensors. Gazebo can also be
extended using plugins, which is useful to gain more control over the simulation
than is usually available or add, e.g. additional sensors.

2.2.1. Simulation of the FINken

To get accurate results from the simulation, the 3D model supplied to Gazebo
has to have a proper mass distribution. To achieve this, the real FINken copter
was approximated by a few simple shapes that were deemed most important
to the mass distribution. These are the battery, the center frame section, the
outer frame section, the rotors, and the sonar sensors. The battery is modeled
separately from the center section, as it represents a significant portion of

1https://ardupilot.org
2https://gazebosim.org

4

https://ardupilot.org
https://gazebosim.org


2.2. Simulation

the mass of the whole copter and sits below the center of mass of the center
structure of the copter. Modeling them both together as a single unit would
shift the center of mass significantly. Table 2.1 lists the measured masses of
these components and Figure 2.1 shows how they are assembled to approximate
the real FINken copter. For simplicity, the sonar sensors are arranged in a circle
rather than attached to the outer frame. This might have a small effect on the
accuracy of the mass distribution, but as the position error is small and the
mass of the sensors is small compared to the remaining mass of the copter, the
impact on flight behavior is negligible.

Table 2.1.: Masses of the individual modeled copter components
Component Mass

Center Frame 168g
Outer Frame 190g
Battery 54g
Sonar Sensor 6g
Rotor 10g

Figure 2.1.: Top and side view of the copter model and a picture of the
FINKen3

5



2. Background

2.2.2. Sensor characteristics

Gazebo provides the ability to simulate various sensor types. Gazebos sonar
senors can either use a sphere or a cone as detection pattern. To approximate
the sensors used on the FINken a cone with a varying opening angles and
maximum ranges are used. An illustration of these sensors (not to scale) can
be seen on the title page of Figure 1.1.

2.2.3. Lift Simulation

The four disks visible in Figure 2.1 represent the rotor blades and are fixed
in place with the freedom to rotate. When Gazebo receives motor commands
from Ardupilot it will apply a torque to these disks, and they will start to
rotate. Because these disks have proper mass and inertia properties set, this
will also cause a torque to be applied to the whole copter. To cancel the torque,
two disks spin clockwise the other two spin counterclockwise, as is common in
quadcopters. Applying differential thrust to these two sets of rotors gives the
ability to control the yaw of the vehicle. The disks are important for correct
torque simulation, but do not generate any lift on their own. To generate
lift, each disk has two lifting surfaces defined, representing the two blades of
a rotor. Gazebo will apply forces to the lifting surfaces depending on the air
speed and angle of attack. The lifting surfaces are rigidly attached to the rotor
disks so that the lift and drag forces are properly applied to the copter.

2.2.4. Copter Guidance

The swarm behavior which will later be introduced relies on the Guided flight
mode of Ardupilot. In this mode, the copter does not respond to inputs from
a human with a remote but to commands from a ground station, a piece
of software running on a computer sending flight commands and receiving
telemetry data. The intended purpose of this mode is to let a copter fly
pre-planned missions following a set of waypoints or interactively supplying a
position to fly to3. This mode also has other sub-modes which do not specify a
target position but a target velocity or acceleration. To apply the attraction-
repulsion forces to the copters, they are transformed into accelerations by
dividing by the copter mass and then passed to the acceleration sub-mode.

3https://ardupilot.org/copter/docs/ac2_guidedmode.html

6

https://ardupilot.org/copter/docs/ac2_guidedmode.html


2.3. Swarm Intelligence and Swarm Robotics

In order for this mode to work the autopilot needs to know the position of the
copter which is usually provided by a GPS module. In this case, the position
data is provided by the simulation, which has perfect knowledge of all flight
data.

2.3. Swarm Intelligence and Swarm Robotics

This section describes the fields Swarm Intelligence and Swarm Robotics and
how the concepts of each are applied in this thesis.

2.3.1. Swarm Intelligence

The term Swarm Intelligence was first introduced by Beni and Wang [4] in
1993 in their research on Cellular Robotic Systems, which is “a simplified
model of general distributed robotic systems” [4]. This model assumes that
the robots are not centrally controlled, have no shared memory, and can only
communicate with other robots when they are in proximity. Beni and Wang
proceed to define Swarm Intelligence as follows:

Systems of non-intelligent robots exhibiting collectively intelligent
behavior, evident in the ability to unpredictably (#) produce spe-
cific (=not in a statistical sense) ordered patterns of matter in the
external environment.

# Unpredictable is meant as globally ‘intractable’ or ‘externally
not-representable’.

When Beni and Wang talk about the unpredictability of the outcome of such
a system, they mean — what is today known as — emergence. [17] A system
shows emergent behavior when the systems’ behavior cannot be predicted by
the behavior of a single individual of the swarm.

The term Swarm Intelligence later lost its strict robotics connection and was
subsequently used in the context of optimization methods and societal studies
employing concepts from natural swarms [5]. A new term for swarm intelli-
gence in the context of robotics was later introduced: Swarm robotics As the
usage and meaning of the term Swarm Intelligence widened over time Beni
offered a new definition in [3]:

7



2. Background

The intuitive notion of “swarm intelligence” is that of a “swarm”
of agents (biological or artificial) which, without central control,
collectively (and only collectively) carry out (unknowingly, and in
a somewhat-random way) tasks normally requiring some form of
“intelligence”.

2.3.2. Swarm Robotics and Evolutionary Robotics

Swarm Robotics is a field of research regarding multi-robot systems which takes
inspiration from swarming animals and insects to jointly achieve a goal.

Şahin and Spears provide the following definition of swarm robotics:

Swarm robotics is the study of how numerous relatively simple
physically embodied agents can be designed such that a desired col-
lective behavior emerges from the local interactions among agents
and between the agents and the environment. [24]

Swarms of animals or insects often have properties which are very desirable
for robotic systems: They are robust, flexible, and scalable. Swarm robotics
tries to take advantage of these properties.

A robust swarm system can continue operation despite failure of some parts
of the swarm. There are multiple properties of insect swarms that lead to their
robustness. In homogeneous swarms, each swarm member can be replaced by
any other swarm member or in quasi-homogeneous swarms like ant colonies,
there are likely enough other swarm members of the same role present to
compensate the failure. Insect swarms also do not have any centralized entity in
charge of coordination, and therefore there is no single point of failure. Instead,
swarm members communicate in a local scope, which makes the whole swarm
more robust to failures. Additionally, every member of the swarm is relatively
simple, making them less likely to fail in the first place when compared to a
monolithic complex system which could achieve the same task as the whole
swarm [24].

Due to the simple and non-specialized swarm members, swarms are also flexi-
ble. Multiple swarm members can perform a variety of tasks with a variety of
requirements by cooperation. For example, a particularly heavy object can be
moved by multiple swarm members low signal strength can be compensated
for by using multi-hop communication [14].

8



2.4. Evolutionary Algorithms

Because of the limitation of communication to a local scope, swarms, and
swarm robotic systems are scalable: Adding or removing swarm members is
possible without altering the function of the swarm because only few swarm
members are affected by such a change [14].

The field of robotics, and for that matter, Swarm Robotics, has one funda-
mental problem to solve: the design problem. That is defining “appropriate
individual rules that will lead to a certain global pattern” [26]. Designing the
appropriate structures and rules which lead to the desired behavior requires
the decomposition of the global behavior into the actions and interactions on
the individual level. Such a decomposition might be very difficult to perform.
Evolutionary Robotics is another field of research inspired by the principles of
nature that tries to bypass the design problem.

Evolutionary robotics is an automatic technique for generating
solutions for a particular robotic task, based on artificial evolu-
tion. [26]

It applies evolutionary algorithms to robots or robot swarms to find a solution
that shows the desired “global pattern”. Often these algorithms co-evolve the
morphology (body) and the control (brain) — as it also happens in nature —
because it results in fitter individuals [1].

2.4. Evolutionary Algorithms

START Populationinitialize

Evaluated
Population

evaluate

STOP Fittest Indvs.select

build new population

Figure 2.2.: Flowchart of a regular Evolutionary Algorithm (adapted from [26])

Evolutionary algorithms are a class of metaheuristics which employ concepts
inspired by biological evolution [17]. Metaheuristics are used to find approxi-
mate solutions for which no exact or efficient, i.e., non-exponential, solutions
are known. This is usually done by performing a guided random search,
which iterates on candidate solutions with some measure of solution quality
for guidance. To produce new solutions which are similar to existing, good

9



2. Background

solutions, two mechanisms are employed by evolutionary algorithms: muta-
tion and crossover. Mutation is the process of randomly altering the genes
of an individual, and crossover is the process of combining the genes of par-
ent individuals in to new individuals. In most cases, random mutation is not
beneficial or even harmful to the fitness of an individual. But some mutations
might lead to a small increase in performance/fitness. When combined with a
selection mechanism that only lets the fittest individuals reproduce and many
repetitions, this leads to a gradual increase in fitness. A typical structure of
an evolutionary algorithm is shown in Figure 2.2.

According to Kruse et al. [17, p. 237] the following building blocks are required
for an evolutionary algorithm.

• an encoding for the solution candidates
• a method to create an initial population
• a fitness function to evaluate the individuals
• a selection method on the basis of the fitness function
• a set of genetic operators to modify chromosomes
• a termination criterion for the search
• values for various parameters

An encoding is a way to represent an individual in a way which makes it easy
to operate on it with the genetic operators. This is usually a list of values,
each describing a property of the individual, but this might vary significantly
depending on what works best for the problem the algorithm is applied to.
At the beginning of the algorithm the encodings of the initial population need
to be initialized with a random initialization suggesting itself as the obvious
method. Although, often there are constraints applied to the values that are
produced by the initialization and genetic operators as some encodings might
not produce a valid individual or are deemed infeasible.

2.4.1. Multi-objective Evolutionary Optimization

To evolve a robots’ form or behavior, the desired outcome needs to be mea-
surably defined. But there is rarely a single metric which describes perfectly
the desired behavior and therefore “it is common to find in the literature fit-
ness functions composed of multiple behavioral terms” [27], which basically
expresses a multi-objective problem as a single-objective problem. This leaves

10



2.4. Evolutionary Algorithms

the problem of weighting the different terms against each other to find a suit-
able trade-off up to the designer, which is sometimes very difficult because the
different terms might even conflict with each other. Instead, the objectives
can be separated by searching for Pareto-optimal/non-dominated solutions.

Definition 1 (Strict Dominance, from [17])
An element s1 ∈ Ω strictly dominates an element s2 ∈ Ω if s1 dominates s2
and there is an i with 1 ≤ i ≤ k such that

fi(s1) > fi(s2)

Definition 2 (Dominance, from [17])
An element s1 ∈ Ω dominates an element s2 ∈ Ω if and only if for all 1 ≤ i ≤ k

fi(s1) ≥ fi(s2)

If a solution is not strictly dominated by any other solution, it is Pareto-
optimal. Searching for Pareto-optimal solutions removes the need for a single
compound fitness function and instead allows the user to choose the impor-
tance of the objectives a posteriori. However, in the setting of an evolutionary
algorithm this makes it more difficult to use the typical selection operators as
a simple comparison now does not work anymore. The solutions are spread
on the Pareto frontier, which is the set of Pareto-optimal solutions. A multi-
objective evolutionary algorithm should select solutions evenly from the Pareto
frontier to offer a diverse set of good solutions. The most popular [17] approach
to achieve this, is the Non-Dominated Sorting Genetic Algorithm-II (NSGA-
II) [8]. It uses the dominance criterion to rank the solutions and also includes a
mechanism to remove solutions which lie too close to each other on the Pareto
frontier to ensure a diverse set of solutions.

11





3. State of the Art and Related
Work

Due to the prohibitively high cost of performing evolutionary optimization
techniques on actual hardware, most of the current research resorts to using
simulation, although some research makes used of the increased availability of
rapid prototyping as well as a modular design to reduce these costs [1].

Multi-objective optimizations (MOO) has only been applied sparsely in evolu-
tionary robotics, but Trianni and Lopez-Ibanez[27] show that it produces good
results and solves some common problems of single-objective optimization, like
the bootstrap problem and premature convergence. According to [27] MOO
also allows a wider exploration of the objective space and the use of proxy ob-
jectives when no objective exists that explicitly defines the desired outcome.
They consider some common problems used in Swarm Robotics like Maze
Navigation, flocking and a strictly collaborative task and solve them using
equivalent multi- and single-objective methods. They conclude that MOO can
be especially beneficial in evolutionary robotics when no “good fitness function
is available a priori”.

Table 3.1 shows a selection of works which in some way try to optimize the
“body” or “mind” of a robot for a certain task and are categorized by a couple
of properties. The works differ in the applied method, used robot, goal, or
task the robot has to achieve, which parts of the robot are changed and what
type of controller software is used.

The evolution column of the table shows which parts of the robots are changed
with evolution. This is either body or mind, or both. Body refers to the physi-
cal construction of the robot. This is further divided into sensors and structure,
as some works focus on the sensor properties while others focus on the moving
components that make up the robot. Mind refers to the control software of
the robot, the part that takes data from the sensors or other environmental

13



3. State of the Art and Related Work

data and controls the actuators of the robot. The mind might be a genetic
program, a neural network, a set of stimulus response rules or a state machine.

The method column shows which optimization method was used. This mostly
includes single-objective evolutionary algorithms (EA), multi-objective evolu-
tionary algorithms (MO-EA) and multi-objective genetic programming (MO-
GP). Notably, not many works chose a MOO method. The swarm column
simply indicates whether the method was applied to a single robot or to mul-
tiple robots engaging in a swarm behavior, and the task shows what type of
behavior the robot or swarm was optimized for. The robot column shows the
name or type of robot used, and the controller column shows what type of
control software was used.

Co-evolution of body and mind As already previously noted and found
by [1] many works evolve both body and mind, likely because it generally leads
to fitter individuals. Co-evolution of both of those is common because usually
changing the construction of a robot also necessitates a change in the controller
in order to respond to the new construction correctly. For example, in [7] the
shape of a fin on a fish-like robot and oscillation rate are co-evolved to optimize
for speed and efficiency in a multi-objective fashion and different fin shapes
might require the robot to oscillate in a different frequency to achieve the best
possible fitness for this shape.

Goals and Task A very common optimization goal is Travel or Locomotion,
which means the robots are optimized to move as far, fast or efficiently as
possible. This goal is mostly applied to single robots [13, 6, 20, 15, 19, 21]
while for swarms the most common goal is Flocking/Aggregation or Pursuit [9,
11, 28].

Types of robots When categorizing robots into nautical, terrestrial and air-
borne types the most common type in evolutionary robotics seems to be ter-
restrial robots with two thirds of the reference papers from Table 3.1 choosing
wheeled or legged robots. This is likely because experiments on these types of
robots are easier to perform than on nautical or airborne vehicles, and because
especially the wheeled robots can be approximated very closely with simple
kinematic models for simulation.

Controller Most works require a custom controller software specifically de-
signed for the hardware of one specific robot. This work stands out as it
re-uses a common autopilot software with only a few additions so that it could
theoretically be used on many different muticopter robots.

14



Evolution Method Swarm Task Robot Controller

Body Mind

Haller [13] Str. x EA — Travel Neubot C (Neuron Oscillators)
Parker [22] Sen. x EA — Foraging Hexapod C (Stimulus Response Rules)
Bugajska [6] Sen. x EA — Travel UAV C (Stimulus Response Rules)
Moore [20] Str. x EA — Travel Amphib. C (Motor Oscillation)
Hornby [15] Str. x EA (L-Systems) — Travel “Turtle” C (Motor Sequence)
Clark [7] Str. x MO-EA — Loc. Fish C (Preset Motor Sequence)
Barlow [2] — x MO-GP — Pursuit Plane C (Genetic Program)
Dorigo [9] — x EA x Agg. s-bots C (Perceptron)
Francesca [11] — x F-Race x For./Agg. e-puck C (State Machine)
Yasuda [28] — x EANN x Pursuit Two-wheel C (Neural Network)
Mohid [19] — x EIM — Travel Pi-Swarm C (Carbon Nanotubes)
Mwaura [21] — x GEP — Travel Cellular C (Genetic Program)

This work Sen. x SPOC x Agg. FINKen Ardupilot (Attraction, Repulsion)

Abbreviation Meaning

Str. Structure
Sen. Sensor
C Custom Controller Software

Table 3.1.: Comparison of other works using evolutionary optimization techniques on robots

15





4. Sensor Placement
Optimization Using
Co-Evolution (SPOC)

4.1. Behavior

FR

FA

Figure 4.1.: Attraction and repulsion forces generated by the sensors

17



4. Sensor Placement Optimization Using Co-Evolution (SPOC)

0 1 2 3 4 5 6
Distance

−2

−1

0

1

Fo
rc

e
0 1 2 3 4 5 6

10

20

30

0 1 2 3 4 5 6
Distance

0 1 2 3 4 5 6

0 1 2 3 4 5 6
Distance

0 1 2 3 4 5 6

Figure 4.2.: Examples of the attraction repulsion functions

Algorithm 1: Swarm behavior
Data: Y =List of sensor yaws relative to copter
l =Flag: Is this copter the leader?
Input: S =List of sensor readings
y =yaw of the copter relative to world
Result: Force F

1
#»

F ← l · #»

F leader;
2 for i ∈ range(len(S)) do
3 if not detected(Si) then
4 continue;
5 end
6

#  »

dir ← (sin(Yi − y), cos(Yi − y), 0);
7 Fi ← attract_repulse(Si);
8

#»

F ← #»

F + Fi ·
#  »

dir;
9 i← i+ 1;

10 end

For purposes of evaluation, a simple swarm behavior based on attraction and
repulsion is implemented as shown in Algorithm 1. Each sensor measurement

18



4.1. Behavior

is translated into a force using an Attraction-Repulsion Function. If there is
no other copter within the range of the sensor, i.e., it reports its maximum
range as measurement, it is not used for final force calculation. Addition-
ally, to the forces generated by the sensor readings, the leading copter gets
the constant force

#»

F leader added to its resulting force
#»

F . A commonly used
attraction-repulsion function used for swarms is the one presented by Gazi and
Passino[12]. A swarm with agents using this attraction-repulsion function is
proven to have a fixed swarm center, and any free agent will move towards
the swarm center once it has passed a certain distance from the center. These
properties are proven under the assumption that there are no communication
delays and require infinite detection range. In this application, though, there
are delays introduced by sensor processing done by Ardupilot and the sen-
sor detection range is finite by design. The sensors are the only means of
communication between the robots, and in order to fit the intuition of swarm
intelligence, the communication should be limited to a local scope. As neither
of these conditions are met in this application, it is possible that this attraction
repulsion function cannot result in a stable swarm. In order to account for this
possibility, the experiments will explore a few different functions as well.

In the following listing the function output is only the magnitude force, the
direction is determined in the behavior code by the yaw angle of the corre-
sponding sensor. Attraction repulsion function III is the one presented by Gazi
and Passino.

Attraction Repulsion Function I

F I(r) = r · (Pa − Pb/r
2) (4.1)

Attraction Repulsion Function II

F II(r) = r · (Pa/r − Pb/r
2) (4.2)

Attraction Repulsion Function III

F III(r) = r · (Pa − Pb exp(−r2/Pc)) (4.3)

An example of each function can be seen in Figure 4.2. Function I and II require
two parameters, while Function III requires three parameters. But the number
of parameters for function III can be reduced to two by defining a comfortable

19



4. Sensor Placement Optimization Using Co-Evolution (SPOC)

distance so that all functions require the same number of parameters. The
comfortable distance is the point where the attraction force FA is equal to the
repulsion force FR.

FA = #»p dPa =
#»p dPb exp

(
−d2

Pc

)
= FR (4.4)

=⇒ Pa = Pb exp

(
−d2

Pc

)
(4.5)

⇐⇒ lnPa = lnPb
Pc

d2
(4.6)

⇐⇒ d = ∓
√

Pc ln
Pb

Pa

(4.7)

From Equation (4.6) follows that with a preset comfortable distance d and
given Pa and Pb, Pc = d2 ln Pb

Pa

4.2. Objectives

The desired swarm behavior is a uniform aggregation of swarm members, mov-
ing in a mostly straight line. To achieve this behavior, two objectives are
defined: aggregation quality and motion quality, which are both inspired by
the objectives used by Dorigo et al. [9]. Objectives are calculated from the
last 25 data points, so the last 2.5 seconds of the simulation. It is assumed
that the behavior of the swarm will take some time to converge because the
copters might initially not be at the distances the attraction repulsion desire
and also the copters will take some time to accelerate. This is why only data
from the last few seconds where the swarm had enough time to converge to
a stable behavior is considered. An effort is made to make the execution of
all simulations as equal as possible as is explained in Section 5.1.1 but there
might still be a difference of a few data points, this is an additional reason to
select the same amount of data from each copter instead of all the available
data.

20



4.2. Objectives

4.2.1. Aggregation Quality

s1
s2

s3s4

s5s6
s7

Figure 4.3.:
Example of the distances used
for calculation of aggregation
quality.

Dorigo et al. [9] use the optimal solution to
the circle packing problem as a measure for
how well the robots aggregated themselves.
For a given swarm size and robot diameter,
there exists the smallest circle of radius rm
into which all the robots can be fit. If a
robot is closer than rm to the swarm center
it achieves an aggregation quality 1, if it is
further away the aggregation quality is lin-
early reduced until it reaches some thresh-
old k further than rm, at which point the
aggregation quality is set to 0. There are
two problems with using this exact mea-
sure of aggregation quality for this work. Firstly, the copters are not supposed
to touch each other unlike the robots from [9] and secondly it requires finding
a suitable value for k and no method for finding it is given by Dorigo et al. [9].
In order to avoid having to find a well working virtual size for the copters to
be able to use this measure while allowing distance between the copters and
having to find a value for k a measure based on the distribution of the distances
of the copters to the swarm center is used (see Figure 4.3). The distances of
all copters is collected and the variance, i.e., the mean of the squared differ-
ences from the average center distance, is used as a measure of aggregation
quality. This means that no longer the most compact formation is preferred,
but formations in which the copters have mostly equal distances to the center
of the swarm. This allows different sizes of formations with maybe different
sensor ranges and attraction repulsion parameters to occur while still showing
a uniform aggregation pattern.

4.2.2. Motion Quality

Motion quality is a measure of how straight the motion of a copter was. It
is adapted from the motion quality used by Dorigo et al. [9] for two-wheeled
robots, where it is calculated by summing the speed differential of the two
wheels over the course of the experiment. To transfer the idea of straight-
line motion to flying vehicles, the sum of the angles between three subsequent
positions of the vehicle is used, as shown in Figure 4.4. The motion quality of

21



4. Sensor Placement Optimization Using Co-Evolution (SPOC)

ϕ1

ϕ2

ϕ3

Figure 4.4.: Example of the angles used for computing motion quality

a copter c is QM(c) =
∑n

i=2 angle(p
c
i−2, p

c
i−1, p

c
i) where angle is the smaller of

the two angles between the three points supplied. The total motion quality of
an individual is the average motion quality of all the copters. As the objective
calculations always use the same number (25) of data points, there exists a
maximum value for the motion quality of 23π. This maximum value is used
to scale the motion quality to a range from 0 to 1. The final motion quality
for an individual is shown in Equation (4.8).

QM =

∑
QM(c)

|C| · 23π
, c ∈ C (4.8)

4.2.3. Certainty

Due to the nature of the physics-based simulation in use, the evaluation is not
deterministic and the fitness value of an individual will vary between successive
evaluations. If not accounted for, this might lead to the accidental selection or
dismissal of individuals which, by chance, achieved an above or below-average
result. To avoid this problem, two mitigations have been applied to the fitness
function.

The first mitigation is to apply a rolling average over each objective of an
individual that has been evaluated multiple times in an unchanged form (see
Figure 4.5). This means that the older the individual is — i.e., the more often
it has been evaluated — the more confident one can be of the fitness value
of it. But this alone will not resolve the problem, the solutions with higher
confidence need to be preferred in some way by the selection operator in order
for this to mitigate the problem.

Young individuals could be penalized by multiplying the fitness with a sigmoid-
like function in order to prefer older individuals with higher certainty of their
fitness. But this adds more complexity and the need to figure out what type of
penalty function works best. Instead, the age of an individual is added as an

22



4.3. Algorithm

additional objective that shall be maximized. This way older individuals will
be preferred automatically without the need to find a good penalty function
while still allowing good, young individuals to be selected.

1 2 3 4 5 6 7 8 9 10

1.75

2

2.25

2.5

No. of Evaluations

F
it

ne
ss

Evaluation Samples
Rolling Average

Figure 4.5.: Example of fitness scaling with multiple evaluations

4.3. Algorithm

This section describes in detail the evolutionary algorithm used for solving this
multi-objective problem. First, the general structure is shown and then all the
components are explained individually.

The pseudocode is listed in Algorithm 2 and visualized as flow-chart in Fig-
ure 4.6. At first, the archive and population is initialized. The archive is
initialized to the empty set and the population to a list of N random indi-
viduals. A random individual is assigned 16 sensors, each with a randomized
yaw, opening angle and maximum range. Additionally, the parameters for the
attraction repulsion function are added, chosen from a uniform distribution.
The Archive is a set in which every individual created during the runtime will
be saved. An individual consists of the genome as well as fitness history and
a computed fitness.

evaluate Each individual is then evaluated by the process described in Sec-
tion 6.1 and are the inserted into the archive.

update When the archive is updated with the new population, any new indi-
vidual is directly inserted into the archive. If the individual has been evaluated
before, the new fitness value is added to its history and a new effective fitness

23



4. Sensor Placement Optimization Using Co-Evolution (SPOC)

Algorithm 2: Copter Evolution
Data: N =Population Size
M =Number of Individuals to select from archive
C =Co-evolution period
Result: pop: List of individuals

1 archive← ∅;
2 pop← N random Individuals;
3 gen← 0;
4 while gen < MAX_GENS do
5 pop← evaluate(pop);
6 archive← update(archive, pop);
7 parents← selNSGA-II(M,archive);
8 offspring ← parents;
9 for o1, o2 ∈ loop_pairs(offspring) do

10 if gen mod 2C < C then
11 o1, o2← crossover_sensor(o1, o2);
12 o1← mutate_sensor(o1), o2← mutate(o2);
13 else
14 o1, o2← crossover_ar(o1, o2);
15 o1← mutate_ar(o1), o2← mutate(o2);
16 end
17 offspring ← fill_to_n(offspring,N, o1, o2);
18 if |offspring| = N then
19 break;
20 end
21 end
22 gen← gen+ 1;
23 end

24



4.3. Algorithm

value is calculated like described in Section 4.2.3. The archive used in SPOC
behaves differently from how archives are typically used in evolutionary algo-
rithms, it does not have a fixed size and includes all individuals instead of
only non-dominated ones. Because of the non-deterministic nature of the sim-
ulation and the resulting variance of the fitness, it is desirable to keep even
non-dominated solutions — especially regarding the certainty objective — in
the archive to give them a chance of getting re-evaluated and gain certainty of
their fitness.

STARTParents

Co-Ev

Offspring

Co-Ev

Offspring Parents
Population

Evaluated Population

Archive

Random
init

Crossover
ARCrossover

Sensor

Mutation
ARMutation

Sensor

Copy

EvaluationUpdate

selNSGA-II

Data

Action

Decision

Figure 4.6.: Flowchart of SPOC

25



4. Sensor Placement Optimization Using Co-Evolution (SPOC)

selNSGA-II Using the selection Operator from NSGA-II [8] M individuals are
selected from the archive to be the parents of the next generation.

The parents are grouped into pairs and from each pair two offspring are gen-
erated using a two-point crossover, and both offspring might be mutated. De-
pending on which co-evolution cycle is currently active, either only the sensors
or just the attraction-repulsion parameters are changed during crossover and
mutation.

fill_to_n New offspring are generated from the pairing of the parents until
the new population reaches a size of N . If N −M is an odd number at the
end of the filling loop, only one of o1 and o2 can be added. fill_to_n is used
to discard o2 if necessary. The parents are included in the new population so
that they can be evaluated again in order to improve the confidence in their
fitness values.

4.3.1. Encoding

There are two parts to be encoded: The sensor position, orientation and prop-
erties, and the attraction-repulsion parameters.

Yaw Fov Range Yaw Fov Range · · · Yaw Fov Range
Sensor Genes

Prma Prmb

AR Genes
Chromosome

Figure 4.7.: Encoding of sensors and attraction repulsion parameters

Attraction-repulsion parameters The attraction-repulsion functions used
require either two (ARI, ARII) or three (ARIII) parameters. One of the pa-
rameters for the third function ARIII is redundant and can be determined by
the other two if a comfortable distance is given. With this property, only two
parameters are needed for any attraction repulsion function because all sensor
forces use the same parameters.

The initial range for initialization of the attraction repulsion parameters is one
of the experiment variables.

Sensor position and properties For maximum flexibility, the sensor posi-
tion could be encoded as Cartesian coordinates relative to the robot center

26



4.3. Algorithm

and a pair of yaw and pitch angles. However, this would lead to a vast number
of solution which are infeasible because they are either in positions so far from
the robot that an actual physical structure to hold the sensor in that position
would be large and heavy or because they are in position without visibility, like
pointing at the robot itself or in directions not relevant for the 2D experiment.

In order to eliminate such solutions and limit the search space, the sensor
positioning is restricted. Sensor positions will be limited to a circle, and the
sensors will point radially outwards from the center of the copter. With these
restrictions, only one angle needs to be encoded for the position of each sensor.

Range

Fov

Yaw Parameter Min Max

Yaw 0◦ 360◦

Fov 8◦ 40◦

Range 2 m 7 m

Figure 4.8.: Top-down view of copter showing the parameters of a sensor and
a table showing the possible value ranges of those parameters.

The possible sensor properties are based on the same line of products used on
the FINken so that it should be possible to find actual sensor which are close
to the sensor parameters produced by the evolutional algorithm.

The final encoding consists of two floating-point values for the attraction re-
pulsion parameters and 3n floating-point values for the sensor yaw, field of
view and maximum range, see Figure 4.7.

4.3.2. Mutation and Crossover

The mutation operator is based on a simple Gaussian mutation, with a stan-
dard deviation σ determined by the range of possible values of the considered
gene (Equation (4.9)). Values for field of view and maximum range are clipped
to the valid range if the mutation causes it to leave the range. Attraction-
repulsion parameters as well as the yaw of the sensors do not have any bounds
and no clipping needs to be done. If the yaw of a sensor leaves the range of [0,

27



4. Sensor Placement Optimization Using Co-Evolution (SPOC)

2π] it is disabled, allowing the algorithm to produce solutions with different
numbers of sensors. A Gaussian mutation was chosen over a random mutation
to allow the gradual improvement of sensors. Bounded polynomial mutation
is another possible mutation operator, but it was not chosen because of a mix
of bounded and unbounded genes, so with a Gaussian mutation with optional
clipping the same mutation can be used for all genes.

σ = p · (gmax − gmin) (4.9)

p is the mutation scaling factor to scale the standard deviation σ, depending on
the valid range of the corresponding parameter. Valid ranges for the sensor pa-
rameters are shown in Figure 4.8. The parameters for the attraction-repulsion
functions are not limited except for the constraint that they are non-negative.
Therefore, the range from the initialization distribution is used, which ranges
either from 0 to 10 or from 0 to 25. Figure 4.9 shows this with an example
parameter which has an initial range from 0 to 10 with p = 0.1, p = 0.25 and
p = 0.5 resulting in σ = 1, σ = 2.5 and σ = 5.

0 5 10

0.2

0.4

Parameter range

x

P
(x
)

σ = 5
σ = 2.5
σ = 1

Figure 4.9.: Normal distributions with different standard deviation used for
Gaussian mutation of genes.

Sensor properties and attraction repulsion parameters are co-evolved in cycles.
Depending on the co-evolution cycle, only the respective parts of the gene are
affected by the mutation operator. There are only very few attraction repulsion
genes compared to sensor genes. With a flat chance of mutation per gene, the
attraction repulsion parameters would only change very rarely. In order to

28



4.3. Algorithm

avoid this problem, the mutation rate is normalized so that PM represents
the average number of individuals which have a single gene mutated. So for
example, with PM = 0.2 every 5th individual has a gene changed independent
of how many genes are eligible for change in the current co-evolution cycle.
Therefore, the actual mutation probability per gene Pm depends on the current
co-evolution cycle and the number of genes considered by it.

There are two genes for attraction repulsion parameters and 48 genes for the
sensors, and therefore the mutation probability for attraction repulsion genes
is PM/2 and the probability for sensor genes is PM/48.
The attraction repulsion genes might be swapped after mutation if AR Func-
tion III is used and Pa > Pb. The other two AR functions do not have this
requirement, and the parameters are never swapped after mutation.
For crossover the default two point crossover from the deap python library [10]
is used, again only the genes corresponding to the current co-evolution cycle
are affected. During crossover the sensor genes are handled as atomic units,
i.e., only complete sensors are exchanged between individuals not just parts of
a sensor gene like yaw, field of view (fov) or range like it is indicated by the
contiguous gray boxes in Figure 4.7. Doing it this way stems from the hypoth-
esis that not some particular sensor parameter is beneficial to the behavior,
but a sensor or set of sensors as a whole. Performing crossover in this way also
makes it simple to generate valid individuals from it and also keeps a diverse
set of parameters instead of something like averaging of two parent genes.
For crossover of the attraction-repulsion parameters, a single point crossover
is used, as there is only one point to cross over at. The second of the two
parameters are swapped between the chromosomes.

4.3.3. Selection

Selection is done using a combination of the selection from the NSGA-II al-
gorithm and an archive of all non-dominated solutions. After evaluation, the
archive is updated with the results, then the new population of size n is created
by selecting several individuals from the archive using the NSGA-II selection
operator. The number of individuals selected this way is determined by the
re-evaluation rate R. With a population size n, the number of selected indi-
viduals is p = ⌊n ·R⌋. The other n− p individuals are created by mating the
first p individuals from the archive by paring them randomly.

29





5. Implementation

This chapter describes the technical details and challenges of the implemen-
tation. From the software that is used over what plugins and extension were
created to how all the parts work and communicate together.

Controller

Ardupilot 1

Ardupilot 2

...

Ardupilot N

Gazebo Server
← Flight data

Motor commands →

Logs

C
om

m
an

d
s

Initialize

Figure 5.1.: Communication structure of simulation environment

Figure 5.1 shows a simplified overview of what processes are needed and how
they communicate with each other.

Gazebo is the physics simulator that does all the lift, drag, and inertia cal-
culations for the rotors as well as the range calculations for all the sensors.
Ardupilot is the autopilot that receives telemetry and flight data from Gazebo
via a tcp connection, uses this data to compute the required throttle for each
rotor and sends those back as commands to Gazebo. The Controller node is
responsible for managing all the Ardupilot and Gazebo processes, as well as
initializing the Gazebo simulation and controlling the startup and liftoff of all
the copters.

31



5. Implementation

5.1. Controller

The main challenge to solve for running the evolutionary algorithm is ensuring
that all experiments get a fair treatment on a heterogeneous compute cluster,
as well as managing all the processes and inter-process communication needed
to collect the required data.

5.1.1. Ensuring Fairness

Startup Calibration Takeoff Swarming Shutdown

Waiting

60s

Terminate SimulationSynchronize

Figure 5.2.: Top: Sequence of an unsynchronized simulation run.
Bottom: Sequence of a synchronized simulation run.

The experiments are run on a heterogeneous compute cluster, and Gazebo
is mostly a single threaded workload. This means that the simulation speed
varies greatly depending on the performance of the hardware any particular
experiment happens to be executed on. Low performance on a weaker compute
node cannot be compensated by simply using more CPU cores. Additionally,
the startup of all the processes, calibration procedure of Ardupilot as well as
the takeoff of the copter take a varying amount of time (see Figure 5.2). This
leads to two problems that need to be solved. A: The copters do not start
the swarm behavior at the same time, and B: Experiments simulate different
amounts of time when run for the same amount of real time.

Problem A is solved by letting the copters wait for further instructions once
they reach their target altitude and become ready and signal their readiness to

32



5.1. Controller

the controller process. Once the controller has received the readiness notifica-
tions of all the copters, it instructs all copters simultaneously to switch into the
swarm behavior. This introduces a waiting period (see bottom of Figure 5.2)
so that copters with a fast initialization phase do not start too early.

Problem B is a common problem for simulations and as such Gazebo already
has a feature that attempts to solve this. It allows the user to specify how
many iterations of the physics solver should be performed and after those are
done the simulation is stopped. However, this does not work in this case
because the initialization phase does not always take the same number of
iterations. If this was used, different experiment runs could spend different
times in the swarm behavior phase, which has to be avoided to make the
experiments comparable. To solve this, a Gazebo plugin was implemented
which has the ability to communicate with the controller process. Once all the
copters are ready, the controller process signals to the plugin that the swarm
phase has started. As the plugin has access to the Gazebo memory, in can save
how much time has been simulated up to that point and can terminate the
simulation once another 60 seconds have been simulated. This ensures that
in every experiment exactly 60 seconds of the swarm behavior are simulated
independently of how long the startup procedure of Ardupilot took or of how
slow or fast the cpu of the compute node is.

5.1.2. Process Management

For each individual to be evaluated, a Gazebo process, an Ardupilot process
for each copter of the swarm and a ground station connection to interface
with each Ardupilot process is required. All of these process need preparation
before starting them like configuration files, parameters, or 3D model files.
Ardupilot has a vast list of parameters that can be set in order to configure
the vehicle that is controlled. This includes PID gains for position and attitude
controllers and motor and sensor configuration. These parameters need to be
properly set so that Ardupilot can properly control the copter and knows
about the sensors positions and properties. It can read the parameter values
from a file which needs to be created for each copter and put into the correct
location so that Ardupilot reads the correct parameters for the corresponding
copter. An excerpt of the parameters relevant for the swarm behavior is shown
in Listing 5.1. The attraction repulsion parameters, the chosen attraction
repulsion function, number of sensors and the sensor position and ranges are

33



5. Implementation

passed to Ardupilot. The index of the proximity sensors starts at 2 because
the first sensor is reserved for altitude measurement. Furthermore, the field of
view of the sensors does not need to be passed to Ardupilot because it is not
relevant for the calculation of the attraction repulsion forces.

Listing 5.1: Example of an Ardupilot parameter file
SWARM_AP_PRM_A 9.88
SWARM_AP_PRM_B 29.45
SWARM_AP_PRM_C 0.05
SWARM_AP_FUNC 2
SWARM_N_SENSORS 16
RNGFND2_YAW 1.4859839656955884
RNGFND2_TYPE 100
RNGFND2_MAX_CM 299
RNGFND3_YAW 4.729669710631424
RNGFND3_TYPE 100
RNGFND3_MAX_CM 519
...
RNGFNDF_YAW 0.7128277076925214
RNGFNDF_TYPE 100
RNGFNDF_MAX_CM 409
RNGFNDG_YAW 3.3937599299406154
RNGFNDG_TYPE 100
RNGFNDG_MAX_CM 347
RNGFNDH_YAW 1.0244225307885766
RNGFNDH_TYPE 100
RNGFNDH_MAX_CM 463

The controller is a python program responsible for managing all the processes
and collection all the data needed for the experiments. The output of the evo-
lutionary algorithm is a list of floats describing the copter configuration, which
the controller converts into Gazebo compatible model files and copies and po-
sitions the models in the way that is necessary for the current experiment.
Once all model files are ready, all necessary processes are spawned. Communi-
cation channels to each Ardupilot process are established using the MAVLink
protocol. This channel is used for issuing commands for takeoff, transitioning
flight mode, as well as recording position data of the swarm members.

34



5.2. Gazebo

5.2. Gazebo

To make Gazebo suitable for this work, it needs to have the ability to send
data to and receive commands from Ardupilot as well as be able to terminate
the simulation after a fixed amount of simulated time has elapsed.

Figure 5.3.: Screenshot of Gazebo with multiple copters. The transparent
cones indicate the detection area of the sensors.

5.2.1. Communication

The first requirement was partly already met by a community provided Gazebo
plugin1 and corresponding patches to Ardupilot. Using a network socket, the
plugin creates a bidirectional data link between the Ardupilot process and the
Gazebo process. The plugin sends flight data like velocity, acceleration, po-
sition, and orientation to Ardupilot and Ardupilot respond with the desired
motor speeds. The plugin provides the ability to define rotational links in a
Gazebo model, representing the rotors, to which the plugin will apply a torque
in order to rotate the link at the speed demanded by Ardupilot. Ardupilot
already has the ability to read sensors, including proximity sensors, and pro-
vide the data to the flight modes, but the plugin did not provide the ability

1https://github.com/SwiftGust/ardupilot_gazebo

35

https://github.com/SwiftGust/ardupilot_gazebo


5. Implementation

to send sensor data from Gazebo. The plugin was therefore extended with
the ability to send proximity sensor data to Ardupilot and additionally the
maximum amount of proximity sensors in Ardupilot was increased to 16 as it
was previously limited to 8.

5.2.2. Sensors

Section 2.2 mentioned the use of Gazebos built-in Sonar sensors and the initial
implementation used these sensors. However, when running the experiment, it
was discovered that these sensors do not behave as expected. The sensors use
the underlying physics library to query for collisions between the cone of the
sensor and any other objects to find the distance to objects within the cone.
It turns out that the physics library only reports collisions with the surface of
the cone and not with its volume. This means that copters completely inside a
sensor cone would not be detected by that sensor at all. Changing this behavior
was not feasible as it requires changes to the Gazebo source code. Instead, an
entirely new detection mechanism was implemented with an approach that
could be realized with a Gazebo plugin and the existing Ardupilot plugin was
extended with that functionality. By not being able to use the built-in sensors
of Gazebo, the ability to visualize them in the simulation was lost. It was
added back by adding transparent models of cones without a collision mesh to
every sensor, which can be seen in Figure 5.3.

Sensor Axis

s

ϕ

detected

detecting

Figure 5.4.: The cone of a simulated sonar sensor in which it can detect another
copter.

The new detection mechanism simply checks whether the position of a copter
is within a cone for each pair of sensor and copter, like it is shown in Figure 5.4
This has the drawback that it is not a proper collision detection and copters
will only be detected when the center of it has entered the detection cone, but

36



5.3. Ardupilot

it is still a good approximation of the actual behavior of a sonar sensor and is
significantly faster to compute than a full mesh collision.

The full detection algorithm running for each copter is listed in Algorithm 3.
Algorithm 3: Proximity Detection algorithm
Data:
S =List of sensor coordinates
Rmax =List of Maximum detection ranges
ϕmax =List of sensor cone angles
Input:
C =List of copter coordinates
c =Index of detecting copter
Result: D =List of distances

1 for i ∈ range(|S|) do
2 dmin ← Ri

max;
3 for j ∈ range(|C|) do
4 if j = c then
5 continue;
6 end
7 #»s ← cj − si;
8 #»s axis ← si − c;
9 ϕ← angle_between( #»s , #»s axis);

10 if ϕ < ϕi
max and ∥ #»s ∥ < dmin then

11 dmin ← ∥ #»s ∥;
12 end
13 end
14 Di ← dmin;
15 end

5.3. Ardupilot

In order to implement the swarm behavior, a new flight mode as well as a
range of parameters to configure sensor parameters were added to Ardupilot.

The flight mode extends the existing guided mode of Ardupilot which already
provides acceleration-based position control as a sub-mode. This makes it
simple to implement the attraction-repulsion based behavior. The new flight
mode simply gathers the ranging data from all sensors, ignoring the ones which

37



5. Implementation

currently do not detect any other copter, calculates the combined force and
divides it by the mass of the copter to get an acceleration which can be directly
passed to the guided mode. The guided mode control loop then calculates the
required motor thrusts to accelerate the copter by the desired amount. The
SITL simulation environment is completely transparent to the code running
on the copter, which means that swarm mode can theoretically run on real
hardware without any changes.

38



6. Experiments and Results

The main experiments explore all three of the attraction repulsion functions
introduced in Section 4.1 with two different sets of starting distributions and
different swarm sizes.

The evolutionary algorithm has several hyperparameters which need to be
set. To determine the best set of those hyperparameters, a preliminary set of
experiments is performed to test different values of re-evaluation rate, mutation
rate and mutation scaling factors. These parameters will then be used for all
the main experiment runs.

6.1. Evaluation Scenario

This section describes the simulation procedure used for the evaluation step.

The leader is placed at the center of the simulation, all other robots are
placed in a circle around the center with a radius of 2.5m (see Figure 6.1).

Figure 6.1.:
Initial copter formation and direction
of the force applied to the leader. (not
to scale)

The copters then begin startup in
the GUIDED mode of Ardupilot, a
mode without the sensors active, and
take off to a pre-defined altitude.
Once all copters report that the tar-
get altitude is reached, the controller
instructs them to enter the swarm
mode, in which the sensors are ac-
tive and forces are applied to the
copters. In this mode, a constant
force is applied to the leader agent
which pushes it into a pre-defined di-
rection. This mode stays active for
60 seconds of simulated time. Ardupilot is instructed to send the position and

39



6. Experiments and Results

attitude data of the copters with a rate of 10Hz. This data is recorded and
is the basis of the subsequent evaluation. Calculation of the fitness objectives
is then performed using the recorded positions. Should any copters’ altitude
drop below 4 m during the 60 s in which the swarming mode is active, it is
very likely that a collision has occurred. A penalty factor of 0.2 or 1.8, de-
pending on whether it is minimized or maximized, is applied to all objectives
for evaluation runs where this occurs.

6.2. Hyperparameter Exploration

To find a good set of hyperparameters, the preliminary experiments will use
a fixed set of experimental parameters (see Table 6.1). The considered hyper-
parameters are population size, re-evaluation rate, mutation rate PM , and the
mutation scaling factor p of the mutation operator. All permutations of the
values listed in Table 6.2 are tested, which results in a total of 54 parameter
sets, all of which are listed in Table A.1. But because the evaluation is very

0.7

0.8

0.9
Gen. 10 Gen. 20 Gen. 30

250 500 750

0.7

0.8

0.9
Gen. 40

250 500 750
Aggregation Quality

Gen. 50

M
ot

io
n

Q
ua

lit
y

Discarded
Kept

Figure 6.2.: Mean fitness values of the hyperparameter sets at each cut-off
point.

costly in terms of time, not all parameter sets are evaluated for the full length
of 50 generations. Instead, all parameter sets are at first evaluated for one co-

40



6.2. Hyperparameter Exploration

Parameter Values

Swarm size 6
AR-Function III
MAR Parameter range [0, 10]

Table 6.1.: Fixed parameter values used in the preliminary experiments

evolution cycle, which is 5 generations of sensor evolution and 5 generations
of attraction-repulsion parameter evolution. After that step, the half of the
parameter sets which produced the worst average fitness values in generation
10 are discarded, and the other half is evaluated again for on co-evolution
cycle. Selection of parameters sets is again performed with the selection op-
erator from NSGA-II. If the amount of parameter sets is not evenly divisible,
the larger part is discarded so that the following amounts of parameter sets
remain after each step: 27,13,6,3,1. Using this approach reduces the total
number of generations to be evaluated from 2700 to 1030 and as evaluation
is costly this reduces the needed time for parameter exploration by multiple
days. The population sizes 10, 16 and 22 have been chosen to try to optimally
use the resources of the compute cluster used to run the experiments. The
majority of workload comes from the Gazebo process, and one thread is al-
located to each. An additional two threads are allocated per experiment for
the controller process and Ardupilot processes, which do not require as many
resources as the Gazebo processes. As such the experiments require either 12,
18 or 24 threads which lets them be nicely distributed on the compute nodes
which mostly offer 48 threads. The population size of 16 was chosen as a
middle ground between 10 and 22, it does not work well with the node size of
48, but the cluster has a node with 120 threads available which can be fully
utilized when combing 18 thread workloads with 12 or 24 thread workloads.
Figure 6.2 shows the mean fitness values of the parameter sets at each cut-off
point, as well as which parameters were selected and which were discarded.

The scatter plot for generation 10 does not show an outlier with an aggregation
quality of over 800 and the plot for generation 40 does not show an outlier with
a motion quality of lower than 0.6 in order to make all pots more readable.
Both of those outliers were discarded at the respective generation. After 40
generations, three sets remain, which happen to include one of every swarm
size tested. From these three, parameter set No. 5 (Table A.1) is selected
as it produced good aggregation quality and reasonable motion quality while

41



6. Experiments and Results

Parameter Values

Population size 10, 16, 22
Re-evaluation rate 1/3, 0.5

Mutation rate 0.2, 0.3, 0.4

Mutation scaling 0.1, 0.25, 0.5

Table 6.2.: Hyperparameter values used in the preliminary experiments

also having the smallest population size of 10. This small population size
is beneficial for the later experiments because more of them can be run in
parallel when the population size is small, reducing the overall time needed for
simulations.

6.3. Experiments

The main experiments explore the impact of different swarm sizes and attrac-
tion repulsion functions with different starting parameters. Due to the mostly
single threaded nature of the Gazebo simulator, the swarm size is fairly lim-
ited because the time required to run a simulation increases rapidly with the
number of copters in the swarm.

Parameter Value

Swarm Size 5, 6, 7
AR-Function I, II, III
AR Parameter range [0, 10], [0, 25]

Table 6.3.: Experimental parameters used for the experiments

Besides the physics solver, the sonar sensor computation is one of the main
contributors to the required computation time. The computation time required
for the sensor calculation increases with the square of the number of copters, as
each sensor has to perform the collision check with every copter. The largest
swarm size was chosen to be 7. A simulation with this number of copters
took roughly 45 minutes on the slowest computing nodes. With all individuals
being evaluated in parallel, this results in the worst-case computation time
of roughly 41

2
days per experiment. All combinations of parameters listed in

42



6.3. Experiments

Table 6.3 are used, resulting in a total of 18 experiments, each run for 150
generations. If a single parameter set is referenced later, it will be named with
a shorthand form like: ARIII 7 10, which means attraction repulsion function
III, swarm size of 7 and initial attraction repulsion parameters from the range
[0, 10]. Figure 6.3 shows the median fitness values of the average fitness of
the experiments over time. Significant improvements in both objectives occur
in both objectives within the first 20 generations. Subsequently, the motion
quality is mostly stagnant while the aggregation quality is slowly improving.
The age is increasing steadily but at a rate lower than one, indicating that
even individuals with high age eventually get dropped from the population
as better, young individuals are found. Overall, the solutions seem to have
improved over time independently of experiment parameters. The reason for
the anomaly in Figure 6.3 at around generation 100 is not entirely clear, but a
likely explanation is that for some technical reason terminated early without
being able to collect the usual 2.5 seconds of data. This would result in a low
motion quality because it scales with the amount of data points. It would also
likely result in a good aggregation quality because it did not have much time
to move from their initial configuration, which is a circle and therefore has a
low variance of the center distances.

43



6. Experiments and Results

0 20 40 60 80 100 120 140

200

400

600

800

A
gg

re
ga

tio
n

Q
ua

lit
y

0 20 40 60 80 100 120 140
0.65

0.70

0.75

0.80

M
ot

io
n

Q
ua

lit
y

0 20 40 60 80 100 120 140
Generation

0

25

50

75

100

A
ge

Figure 6.3.: Median values of the average fitness of each experiment with the
upper and lower tercile in the shaded area. The dotted line shows
a best-fit polynomial of the 5th degree.

To see which experiment parameters had an impact on solutions quality, all
individuals from generation 150 are grouped together by experiment parameter
and their fitness distribution plotted in Figure 6.4. Swarm size does not seem
to have a big impact on motion quality, but swarm size 7 performs notably
better in the aggregation quality objective. The choice of attraction repulsion
function again does not seem to have a notable impact on motion quality, but

44



6.3. Experiments

attraction repulsion function II performs notably better than the other two
functions regarding aggregation quality. Initial parameter range does not have
a big impact in either objective.

5 6 7

0

250

500

750

1000

1250

A
gg

re
ga

tio
n

Q
ua

lit
y

By Swarm Size

1 2 3

By AR Function

10 25

By Parameter Range

5 6 7

0.0

0.2

0.4

0.6

0.8

1.0

M
ot

io
n

qu
al

ity

1 2 3 10 25

Figure 6.4.: Fitness distribution of all individuals of generation 150 grouped
by experiment parameter.

When inspecting each parameter set individually in Figure 6.5, the sets ARII
6 25 and ARII 7 25 especially stand out with a good aggregation quality with
a low spread, even though their motion quality does not stand out compared
to other configurations. Other configurations which stand out are ARI 5 10
and ARIII 6 10 with good motion quality. The individuals produced by these
configurations will be inspected more closely later.

45



6. Experiments and Results

ARI ARII ARIII
0

500

1000

Swarm size 5

ARI ARII ARIII

0.00

0.25

0.50

0.75

1.00

Initial parameters [0,10]
Initial parameters [0,25]

ARI ARII ARIII
0

500

1000

A
gg

re
ga

tio
n

Q
ua

lit
y

Swarm size 6

ARI ARII ARIII

0.00

0.25

0.50

0.75

1.00

M
ot

io
n

Q
ua

lit
y

ARI ARII ARIII
0

500

1000

Swarm size 7

ARI ARII ARIII

0.00

0.25

0.50

0.75

1.00

Figure 6.5.: Box plot of each experimental configuration at generation 150
grouped by swarm size, attraction repulsion function and initial
parameter range for the AR function.

46



6.4. Comparison With Reference Individuals

6.4. Comparison With Reference Individuals

To have a baseline to compare the solutions produced by the EA to, a reference
copter is simulated for each attraction repulsion function and swarm size. The
reference copters have 16 sensors with a maximum range of 7m and an opening
angle of 22.5◦ with the sensors evenly spaced around the copter similar to the
configuration in Figure 4.1. The opening angle of 22.5◦ was chosen because
with 16 sensors it grants a full 360◦ of coverage and the choosing the maximum
of 7 m for the range of the sensors seems like the intuitive best choice for sensor
performance. The attraction repulsion parameters for each function are set to
Pa = 2 and Pb = 1, with a comfortable distance of 3.5m for AR Function
III, just like in the experiments. These values were chosen because with them
AR Function I and II have their zero crossing within the maximum range of
the sensors, function II’s bounded attraction value and the slopes of all three
functions are deemed reasonable. The reference copter is evaluated 31 times
for each AR function and swarm size. The resulting fitness values are shown in
Figure 6.6. To compare them with the solutions produced by the evolutionary
algorithm, all Pareto-optimal individuals were chosen from all individuals the
EA produced combined over all generations and parameter sets. From a total
of 4565 individuals, 24 were Pareto-optimal. These 24 Pareto-optimal solutions
were again evaluated for 31 times each because most of them did not reach a
high age during the evolution. The mean values of those runs are also shown
in Figure 6.6 to compare them to the reference copter. Each large marker in
Figure 6.6 marks the mean fitness of one individual, the small markers each
represent a single evaluation of one individual. When observing only the means
of the fitness distributions, it seems like many of the individuals selected from
the results of the EA out-perform the reference individuals. That difference is
most pronounced in the aggregation quality objective and is less clear in the
motion quality objective.

As the fitness values have a high variance, it is not obvious by the mean
values which individuals are better than others. In order to better compare
the individuals, a new dominance operator is used. This operator is applied to
the whole distribution of fitness values, utilizing the Mann-Whitney U test as
comparison operator, using the corresponding alternative hypothesis of greater
or less for maximized or minimized objectives. As acceptance threshold p <

0.05 is used.

47



6. Experiments and Results

Dark green markers in Figure 6.6 represent Pareto-optimal individuals
from the EA which dominate all the reference individuals when using the
Mann–Whitney U test for the dominance check. Most of the non-dominated
solutions produced are significantly better than the hand-built reference indi-
viduals.

0 200 400 600 800 1000 1200 1400
Aggregation Quality

0.2

0.4

0.6

0.8

1.0

M
ot

io
n

Q
ua

lit
y

Reference Solutions (Mean)
PO Solutions (Mean)
PO>RS Solutions (Mean)
Reference Solutions
PO Solutions

Figure 6.6.: Fitness scatter plot of all non-dominated solutions from the EA
and hand-built reference solutions.

48



6.4. Comparison With Reference Individuals

Figure 6.7.: Example flight paths of the reference individuals with swarm size
7 and attraction repulsion function I. Top-down view with scale in
meters.

49



6. Experiments and Results

Figure 6.8.: Example flight paths of the reference individuals with swarm size
7 and attraction repulsion function II. Top-down view with scale
in meters.

50



6.4. Comparison With Reference Individuals

Figure 6.9.: Example flight paths of the reference individuals with swarm size
7 and attraction repulsion function III. Top-down view with scale
in meters.

51



6. Experiments and Results

Figures 6.7 to 6.9 each show 6 examples of the flight paths of the reference
copters for each attraction repulsion function. In all cases, the follower copters
do not stay attached to the leader and the leader escapes, shown by the gray
line moving out towards the top right of the graphs. If the leader escapes it
usually escapes very far, and to keep the graphs compact the view was cropped
to only show the paths of the follower copters. Example graphs for swarm sizes
5 and 6 are shown in Figures A.4 to A.6 and Figures A.1 to A.3. Again, the
follower copters mostly cannot stay attached to the leader. With swarm sizes
6 and 7 and attraction repulsion function I and II, the copters to the right of
the center seem to be noticeably affected by the leader and are pulled slightly
to the top. This is most pronounced with AR function II, with a swarm size
of 7 (Figure 6.8).

6.5. Inspection of Solutions

This section takes a closer look at solutions generated by parameter configu-
rations which stood out in Section 6.3 and were also included in the Pareto-
optimal set. The flight paths of some individuals, as well as the sensor config-
uration, is examined to understand the individual’s behavior. The flight paths
of the other Pareto-optimal solutions are pictured in Figure A.7..

52



6.5. Inspection of Solutions

Figure 6.10.: Example flight paths of an individual from parameter set ARII 6
25

The parameter set ARII 6 25 stood out with good aggregation quality in
Figure 6.5. Figure 6.10 shows some example flight paths generated by one of
those individuals. The copters all move to the lower left rapidly, taking the
leader copter with them, until they stop, and the leader can move clear of all

53



6. Experiments and Results

the other copters at which point its constant force takes over; it moves back in
an arc to the upper right. This same or very similar behaviors are displayed by
most of the individuals produced by ARII 6 25, but this one was chosen because
the movement to the lower left is the most pronounced. The initial movement
of the copters to the lower left happens in a very linear fashion, which explains
the reasonably good motion quality these individuals achieved. But it appears
that these individuals did not achieve their exceptional aggregation quality by
behaving as a cohesive swarm but by spreading out in the right way, purely by
chance. As the aggregation quality does not include any measure of proximity
to the swarm center this is entirely possible, even if the copters spread out so
far they cannot detect each other anymore and come to stop in a good position.

Figure 6.11.: Sensor configuration and plot of the attraction repulsion function
of the individual from ARII 6 25. The blue triangles represent
the area in which the sensors can detect other copters.

When looking at the sensor arrangement and the attraction repulsion function
of the individual (Figure 6.11) it is not immediately obvious how this behavior
emerges. The very high repulsion force probably leads to a very sudden accel-
eration, such that the copters loose sight of each other and therefore continue
on a straight path, but the chosen direction cannot be explained without more
in-depth analysis.

Another individual which stood out in the analysis of Figure 6.5 was ARI 5
10, because of its good motion quality. When inspecting some flight paths
of one example individual in Figure 6.12 one can observe that this individual

54



6.5. Inspection of Solutions

can sometimes capture the leader and cohesively move all copters in the same
direction. The previous individual as well as the reference individuals did not
show such a behavior. There are some runs in which the leader does escape,
but even in those cases at least some remaining individuals stay together and
move in roughly the same direction, explaining the good motion quality.

Figure 6.12.: Example flight paths of an individual from parameter set ARI 5
10

55



6. Experiments and Results

When inspecting the sensor arrangement and attraction-repulsion function
(Figure 6.13), one can, again, not directly tell how this behavior emerges.
But when comparing those to the previous individual one can see that the sen-
sor have larger ranges, are more evenly spread around the copter, the repulsion
forces are less aggressive and the attraction forces are higher.

Figure 6.13.: Sensor configuration and plot of the attraction-repulsion function
of the individual from ARI 5 10. The blue triangles represent the
area in which the sensors can detect other copters.

Finally, an individual from ARIII 6 10 is inspected, only one of those individ-
uals was included in the Pareto optimal set. ARIII 6 10 is another parameter
set which showed good motion quality. With this individual, the copters never
manage to follow the leader and the overall movement of the copters seems
very chaotic, with many direction changes and no predominant direction the
copters agreed on (see Figure 6.14). Despite that, this individual achieved a
good motion quality, as the direction changes only occur in the first part of
the simulation and the motion quality is measured towards the end.

56



6.5. Inspection of Solutions

Figure 6.14.: Example flight paths of an individual from parameter set ARIII
6 10

Generally, the copters stay closer to the origin than the previous two individu-
als. This a probably a result of the comparatively very low repulsion force (see
Figure 6.15) found in this individual. Furthermore, this individual has a fairly

57



6. Experiments and Results

uneven distribution of sensors, with most of them being oriented towards the
top.

Figure 6.15.: Sensor configuration and plot of the attraction-repulsion function
of the individual from ARIII 6 10. The blue triangles represent
the area in which the sensors can detect other copters.

58



7. Conclusion and Future Work

This chapter at first answers the research questions listed in the introduction,
and the addresses possible improvements and future work to be done on SPOC.

7.1. Conclusion

RQ1 Is it possible to co-optimize structural and behavioral parameters of a
swarm of quadcopters performing an aggregation behavior using an evolution-
ary algorithm?

SPOC is definitely capable of producing good solutions regarding the specified
objectives. Its solutions measurably outperform the reference individuals. But
neither the reference solutions nor the produced solutions consistently show
a behavior where the whole swarm moves as a unit in an aggregated fashion,
often the swarm members break apart from the leader. Perhaps there is some
part of the simulation framework which inhibits the display of such a behavior.
It could be that the inherent latency of the system just does not work well with
any of the three chose attraction repulsion parameters, or that the envisioned
behavior is just notoriously difficult to achieve with the given setup.

RQ2 Is it possible to perform this optimization in a fully automatic fashion?

SPOC is almost fully automated, with only some intervention needed at the
start and at the end. Initially, some parameters need to be set, like swarm
size, number of sensors etc. And finally, the solutions need to be inspected
in order to select an individual with an appropriate trade-off between the
objectives, just like in other multi-objective optimizations. There are still some
technical problems where some simulations get stuck and run into a timeout
repeatedly, causing some individuals to not get properly evaluated. This does
not necessarily require intervention because SPOC continues to function fairly
well after such an occurrence because of the global archive that is used. For

59



7. Conclusion and Future Work

further use of SPOC, however, this problem should be more closely investigated
and fixed, as this would probably improve the results delivers by SPOC.

RQ3 Is it possible to detect any impact of the structural parameters on the
behavioral parameters or vice versa?

These two parts are very intertwined and difficult to separate from each other;
hence they are often co-evolved. The results show no immediate connec-
tion between some set of sensor parameters with another configuration of the
attraction-repulsion function. Perhaps with some further statistical analysis a
correlation could be found, but it is not clear whether this is possible.

RQ4 Can this method produce solutions which outperform solutions which
are manually designed by an expert?

Neither the reference solutions nor the solutions produced by SPOC success-
fully perform the intended behavior, which makes it difficult to answer this
question. When this is purely judged by the fitness of the solutions, then the
answer is yes. But when inspecting the behavior more closely by looking at
the flight paths, this is less clear. Some solutions sometimes come close to
the intended behavior, but do not do this consistently. It is likely that the
chosen fitness functions just do not properly encode the envisioned behavior.
Perhaps there is a different set of fitness function with which SPOC would
produce solutions which behave more like intended. This would likely include
an adaption of the aggregation quality, which also measure distance to the
swarm center.

7.2. Future Work

The swarm aggregation behavior used in this work is purely two-dimensional.
A three-dimensional behavior would add a large amount of complexity and
would likely require a larger number of sensors for any sort of aggregation to
occur. This amount of complexity was just not feasible to add to SPOC at this
time, but with some further work, it would certainly be possible in order to
examine if SPOC also works on 3 dimensional behaviors. Aggregation quality
and motion quality are easily adaptable to three dimensions, but it might also
be worth to look at other fitness functions. Only few individuals managed to
get close to the behavior that the fitness functions were supposed to represent,
there might be other fitness functions which do a better job.

60



7.2. Future Work

This work does not address the reality gap between the simulated copters and
the FINken copters by which they are inspired. The masses of the compo-
nents were measured from the FINken and the sonar sensor parameters are
in ranges which are also achievable with the real hardware. But the sonar
sensor implementation in the simulation is only an approximation of a real
sonar sensors and the aerodynamics — while modelled with proper lift and
drag forces — might still be very different from a real copter. As the swarm
behavior of SPOC is implemented using Ardupilot it should be possible to use
it as is on the real copters and compare the behavior to the simulation and
tune the aerodynamics as well as the sonar sensors. This should be done in
the future to enable SPOC to produce solutions which can be transferred to
the real copters with more certainty.

As seen in Figure 6.6, a single individual produces a range of fitness values
when evaluated multiple times. The method to deal with this in this work,
was to introduce an additional age objective together with a rolling average
filter on the fitness values, in order to gain certainty on the real fitness value
of an individual with a higher certainty. This work does not evaluate the effec-
tiveness of this method or compares it to other methods. But there certainly
are other ways of dealing with this problem which should be evaluated. One
way could be to change the dominance operator for the selection operator to
one that uses the Mann Whitney U test to compare the distributions of fitness
values of two individuals. Another could be to use a penalty function in addi-
tion to the rolling average, in order to prefer individuals with more evaluations,
which would eliminate the age objective.

This work used a maximum swarm size of 7 due to technical limitations, which
is a rather small swarm size. With higher computational power or more op-
timization, it might be possible to try larger swarm sizes in order to evaluate
the scalability of this approach.

61





A. Experiments and Results

Table A.1.: Table of all parameter combinations used for hyperparameter ex-
ploration

Parameter Set Pop. Size RER MR Mσ

1 10 3 0.2 0.1
2 10 3 0.2 0.25
3 10 3 0.2 0.5
4 10 3 0.3 0.1
5 10 3 0.3 0.25
6 10 3 0.3 0.5
7 10 3 0.4 0.1
8 10 3 0.4 0.25
9 10 3 0.4 0.5
10 10 5 0.2 0.1
11 10 5 0.2 0.25
12 10 5 0.2 0.5
13 10 5 0.3 0.1
14 10 5 0.3 0.25
15 10 5 0.3 0.5
16 10 5 0.4 0.1
17 10 5 0.4 0.25
18 10 5 0.4 0.5
19 16 5 0.2 0.1
20 16 5 0.2 0.25
21 16 5 0.2 0.5
22 16 5 0.3 0.1
23 16 5 0.3 0.25
24 16 5 0.3 0.5
25 16 5 0.4 0.1

63



A. Experiments and Results

Table A.1.: continued
Parameter Set Pop. Size RER MR Mσ

26 16 5 0.4 0.25
27 16 5 0.4 0.5
28 16 8 0.2 0.1
29 16 8 0.2 0.25
30 16 8 0.2 0.5
31 16 8 0.3 0.1
32 16 8 0.3 0.25
33 16 8 0.3 0.5
34 16 8 0.4 0.1
35 16 8 0.4 0.25
36 16 8 0.4 0.5
37 22 7 0.2 0.1
38 22 7 0.2 0.25
39 22 7 0.2 0.5
40 22 7 0.3 0.1
41 22 7 0.3 0.25
42 22 7 0.3 0.5
43 22 7 0.4 0.1
44 22 7 0.4 0.25
45 22 7 0.4 0.5
46 22 11 0.2 0.1
47 22 11 0.2 0.25
48 22 11 0.2 0.5
49 22 11 0.3 0.1
50 22 11 0.3 0.25
51 22 11 0.3 0.5
52 22 11 0.4 0.1
53 22 11 0.4 0.25
54 22 11 0.4 0.5

64



Figure A.1.: Example flight paths of the reference individuals with swarm size
6 and attraction repulsion function III. Top-down view with scale
in meters.

65



A. Experiments and Results

Figure A.2.: Example flight paths of the reference individuals with swarm size
6 and attraction repulsion function II. Top-down view with scale
in meters.

66



Figure A.3.: Example flight paths of the reference individuals with swarm size
6 and attraction repulsion function I. Top-down view with scale
in meters.

67



A. Experiments and Results

Figure A.4.: Example flight paths of the reference individuals with swarm size
5 and attraction repulsion function III. Top-down view with scale
in meters.

68



Figure A.5.: Example flight paths of the reference individuals with swarm size
5 and attraction repulsion function II. Top-down view with scale
in meters.

69



A. Experiments and Results

Figure A.6.: Example flight paths of the reference individuals with swarm size
5 and attraction repulsion function I. Top-down view with scale
in meters.

70



Figure A.7.: Example flight paths of the non-dominated solutions produced by
the EA. Each row contains 5 runs of the same individual. The
labeling on the left denotes the used AR function, swarm size and
initial parameter range for the AR function. Top-down view with
scale in meters.

0 25

−20

0

A
R

I5
10

0 25 0 25 0 25 0 25

0 25

−25

0

A
R

I5
10

0 25 0 25 0 25 0 25

0 25

−40

−20

0

A
R

I5
10

0 25 0 25 0 25 0 25

0 25
−10

0
10

A
R

I5
10

0 25 0 25 0 25 0 25

0 25

−40

−20

0

A
R

I
5

10

0 25 0 25 0 25 0 25

0 25

−40

−20

0

A
R

I
5

10

0 25 0 25 0 25 0 25

71



A. Experiments and Results

Figure A.7.: (cont.)

−5 0 5

−10

0

A
R

I
5

10

−5 0 5 −5 0 5 −5 0 5 −5 0 5

0 10

−20

0

A
R

I5
25

0 10 0 10 0 10 0 10

−10 0 10
−10

0

A
R

I5
25

−10 0 10 −10 0 10 −10 0 10 −10 0 10

−10 0 10
−20

0

A
R

II
I5

25

−10 0 10 −10 0 10 −10 0 10 −10 0 10

0 20
−20

0

A
R

II
I5

25

0 20 0 20 0 20 0 20

−5 0 5

−10

0

10

A
R

II
I5

25

−5 0 5 −5 0 5 −5 0 5 −5 0 5

72



Figure A.7.: (cont.)

−5 0 5

−10

0

10

A
R

II
I5

25

−5 0 5 −5 0 5 −5 0 5 −5 0 5

−10 0

0

10

A
R

II
I5

25

−10 0 −10 0 −10 0 −10 0

−10 0

0

10

A
R

II
I5

25

−10 0 −10 0 −10 0 −10 0

0 10

−5

0

5

A
R

II
6

10

0 10 0 10 0 10 0 10

−25 0
−25

0

A
R

II
6

25

−25 0 −25 0 −25 0 −25 0

−25 0

−25

0

A
R

II
6

25

−25 0 −25 0 −25 0 −25 0

73



A. Experiments and Results

Figure A.7.: (cont.)

−25 0

−20

0

20

A
R

II
6

25

−25 0 −25 0 −25 0 −25 0

−50 0

−25

0

25

A
R

II
6

25

−50 0 −50 0 −50 0 −50 0

−25 0

−20

0

A
R

II
6

25

−25 0 −25 0 −25 0 −25 0

0 50

0

25

A
R

I7
10

0 50 0 50 0 50 0 50

−10 0

0

10

A
R

II
I7

10

−10 0 −10 0 −10 0 −10 0

0 20
−10

0

10

A
R

II
I7

25

0 20 0 20 0 20 0 20

74



Bibliography

[1] R. J. Alattas, S. Patel, and T. M. Sobh. “Evolutionary modular robotics:
survey and analysis”. en. In: Journal of intelligent & robotic systems 95.3-
4 (Sept. 2019), pp. 815–828. issn: 0921-0296, 1573-0409. doi: 10.1007/
s10846-018-0902-9. (Visited on 09/05/2022).

[2] G. Barlow, C. Oh, and E. Grant. “Incremental evolution of autonomous
controllers for unmanned aerial vehicles using multi-objective genetic
programming”. In: IEEE Conference on Cybernetics and Intelligent Sys-
tems, 2004. Vol. 2. Dec. 2004, pp. 689–694. doi: 10.1109/ICCIS.2004.
1460671.

[3] G. Beni. “Swarm intelligence”. en. In: Complex social and behavioral sys-
tems. Ed. by M. Sotomayor, D. Pérez-Castrillo, and F. Castiglione. New
York, NY: Springer US, 2020, pp. 791–818. isbn: 978-1-07-160367-3 978-
1-07-160368-0. doi: 10.1007/978-1-0716-0368-0_530. (Visited on
09/06/2022).

[4] G. Beni and J. Wang. “Swarm intelligence in cellular robotic systems”.
en. In: Robots and biological systems towards a new bionics? Ed. by P.
Dario, G. Sandini, and P. Aebischer. NATO ASI Series. Berlin, Heidel-
berg: Springer, 1993, pp. 703–712. isbn: 978-3-642-58069-7. doi: 10.
1007/978-3-642-58069-7_38.

[5] C. Blum and D. Merkle, eds. Swarm intelligence: introduction and appli-
cations. en. Natural computing series. Berlin Heidelberg: Springer, 2008.
isbn: 978-3-540-74088-9.

[6] M. D. Bugajska and A. C. Schultz. Co-Evolution of Form and Function
in the Design of Autonomous Agents: Micro Air Vehicle Project. en.
Tech. rep. ADA480643. Section: Technical Reports. Defense Technical
Information Center.

[7] A. J. Clark, X. Tan, and P. K. McKinley. “Evolutionary multiobjective
design of a flexible caudal fin for robotic fish”. en. In: Bioinspiration &
biomimetics 10.6 (Nov. 2015), p. 065006. issn: 1748-3190. doi: 10.1088/
1748-3190/10/6/065006. (Visited on 09/15/2022).

75

https://doi.org/10.1007/s10846-018-0902-9
https://doi.org/10.1007/s10846-018-0902-9
https://doi.org/10.1109/ICCIS.2004.1460671
https://doi.org/10.1109/ICCIS.2004.1460671
https://doi.org/10.1007/978-1-0716-0368-0_530
https://doi.org/10.1007/978-3-642-58069-7_38
https://doi.org/10.1007/978-3-642-58069-7_38
https://doi.org/10.1088/1748-3190/10/6/065006
https://doi.org/10.1088/1748-3190/10/6/065006


Bibliography

[8] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. “A fast and elitist mul-
tiobjective genetic algorithm: nsga-ii”. In: Ieee transactions on evolution-
ary computation 6.2 (2002), pp. 182–197. doi: 10.1109/4235.996017.

[9] M. Dorigo, V. Trianni, E. Şahin, R. Groß, T. H. Labella, G. Baldas-
sarre, S. Nolfi, J.-L. Deneubourg, F. Mondada, D. Floreano, and L. M.
Gambardella. “Evolving self-organizing behaviors for a swarm-bot”. en.
In: Autonomous robots 17.2 (Sept. 2004), pp. 223–245. issn: 1573-7527.
doi: 10.1023/B:AURO.0000033973.24945.f3. (Visited on 09/06/2022).

[10] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, and C.
Gagné. “DEAP: evolutionary algorithms made easy”. In: Journal of ma-
chine learning research 13 (July 2012), pp. 2171–2175.

[11] G. Francesca, M. Brambilla, A. Brutschy, V. Trianni, and M. Birattari.
“AutoMoDe: a novel approach to the automatic design of control software
for robot swarms”. en. In: Swarm intelligence 8.2 (June 2014), pp. 89–
112. issn: 1935-3820. doi: 10.1007/s11721-014-0092-4. (Visited on
09/13/2022).

[12] V. Gazi and K. Passino. “Stability analysis of swarms”. In: Ieee trans-
actions on automatic control 48.4 (Apr. 2003). Conference Name: IEEE
Transactions on Automatic Control, pp. 692–697. issn: 1558-2523. doi:
10.1109/TAC.2003.809765.

[13] B. von Haller, A. J. Ijspeert, and D. Floreano. “Co-evolution of structures
and controllers for neubot underwater modular robots”. In: Ecal (2005).
doi: 10.1007/11553090_20.

[14] H. Hamann. Swarm Robotics: A Formal Approach. en. Cham: Springer
International Publishing, 2018. isbn: 978-3-319-74526-8 978-3-319-
74528-2. doi: 10.1007/978- 3- 319- 74528- 2. url: http://link.
springer.com/10.1007/978-3-319-74528-2 (visited on 08/29/2022).

[15] G. S. Hornby and J. B. Pollack. “Body-brain co-evolution using L-
systems as a generative encoding”. In: Proceedings of the 3rd Annual
Conference on Genetic and Evolutionary Computation. GECCO’01. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., July 2001,
pp. 868–875. isbn: 978-1-55860-774-3. (Visited on 09/18/2022).

[16] J. Hu, H. Niu, J. Carrasco, B. Lennox, and F. Arvin. “Fault-tolerant co-
operative navigation of networked UAV swarms for forest fire monitor-
ing”. en. In: Aerospace science and technology 123 (Apr. 2022), p. 107494.
issn: 1270-9638. doi: 10 . 1016 / j . ast . 2022 . 107494. (Visited on
10/18/2022).

76

https://doi.org/10.1109/4235.996017
https://doi.org/10.1023/B:AURO.0000033973.24945.f3
https://doi.org/10.1007/s11721-014-0092-4
https://doi.org/10.1109/TAC.2003.809765
https://doi.org/10.1007/11553090_20
https://doi.org/10.1007/978-3-319-74528-2
http://link.springer.com/10.1007/978-3-319-74528-2
http://link.springer.com/10.1007/978-3-319-74528-2
https://doi.org/10.1016/j.ast.2022.107494


Bibliography

[17] R. Kruse, S. Mostaghim, C. Borgelt, C. Braune, and M. Steinbrecher.
Computational Intelligence: A Methodological Introduction. en. Texts in
Computer Science. Cham: Springer International Publishing, 2022. isbn:
978-3-030-42226-4 978-3-030-42227-1. doi: 10.1007/978-3-030-42227-
1. (Visited on 08/05/2022).

[18] D. Mader, R. Blaskow, P. Westfeld, and C. Weller. “Potential of uav-
based laser scanner and multispectral camera data in building inspec-
tion”. In: The international archives of the photogrammetry, remote sens-
ing and spatial information sciences XLI-B1 (2016), pp. 1135–1142. doi:
10.5194/isprs-archives-XLI-B1-1135-2016. url: https://www.
int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLI-
B1/1135/2016/.

[19] M. Mohid and J. F. Miller. “Evolving robot controllers using carbon
nanotubes”. en. In: 07/20/2015-07/24/2015. The MIT Press, July 2015,
pp. 106–113. isbn: 978-0-262-33027-5. doi: 10 . 7551 / 978 - 0 - 262 -
33027-5-ch025. (Visited on 09/15/2022).

[20] J. M. Moore and P. K. McKinley. “Evolution of an amphibious robot with
passive joints”. In: 2013 IEEE Congress on Evolutionary Computation.
ISSN: 1941-0026. June 2013, pp. 1443–1450. doi: 10.1109/CEC.2013.
6557733.

[21] J. Mwaura and E. Keedwell. “Evolving robot sub-behaviour modules
using gene expression programming”. en. In: Genetic programming and
evolvable machines 16.2 (June 2015), pp. 95–131. issn: 1389-2576, 1573-
7632. doi: 10.1007/s10710-014-9229-x. (Visited on 09/16/2022).

[22] G. B. Parker and P. J. Nathan. “Co-evolution of sensor morphology and
control on a simulated legged robot”. In: 2007 International Symposium
on Computational Intelligence in Robotics and Automation. June 2007,
pp. 516–521. doi: 10.1109/CIRA.2007.382874.

[23] P. Radoglou-Grammatikis, P. Sarigiannidis, T. Lagkas, and I. Moscho-
lios. “A compilation of UAV applications for precision agriculture”. en.
In: Computer networks 172 (May 2020), p. 107148. issn: 1389-1286. doi:
10.1016/j.comnet.2020.107148. (Visited on 10/18/2022).

[24] E. Şahin and W. M. Spears, eds. Swarm robotics: SAB 2004 international
workshop, Santa Monica, CA, USA, July 17, 2004: revised selected pa-
pers. en. Lecture notes in computer science, State-of-the-art survey 3342.
Meeting Name: International Conference on Simulation of Adaptive Be-

77

https://doi.org/10.1007/978-3-030-42227-1
https://doi.org/10.1007/978-3-030-42227-1
https://doi.org/10.5194/isprs-archives-XLI-B1-1135-2016
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLI-B1/1135/2016/
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLI-B1/1135/2016/
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLI-B1/1135/2016/
https://doi.org/10.7551/978-0-262-33027-5-ch025
https://doi.org/10.7551/978-0-262-33027-5-ch025
https://doi.org/10.1109/CEC.2013.6557733
https://doi.org/10.1109/CEC.2013.6557733
https://doi.org/10.1007/s10710-014-9229-x
https://doi.org/10.1109/CIRA.2007.382874
https://doi.org/10.1016/j.comnet.2020.107148


Bibliography

havior OCLC: ocm57597119. Berlin ; New York: Springer, 2005. isbn:
978-3-540-24296-3.

[25] E. Semsch, M. Jakob, D. Pavlicek, and M. Pechoucek. “Au-
tonomous UAV surveillance in complex urban environments”. In: 2009
IEEE/WIC/ACM International Joint Conference on Web Intelligence
and Intelligent Agent Technology. Vol. 2. Sept. 2009, pp. 82–85. doi:
10.1109/WI-IAT.2009.132.

[26] V. Trianni. Evolutionary Swarm Robotics. en. Ed. by J. Kacprzyk.
Vol. 108. Studies in Computational Intelligence. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008. isbn: 978-3-540-77611-6 978-3-540-
77612-3. doi: 10.1007/978-3-540-77612-3. (Visited on 09/06/2022).

[27] V. Trianni and M. Lopez-Ibanez. Advantages of multi-objective op-
timisation in evolutionary robotics: survey and case studies. Techni-
cal TR/IRIDIA/2014-014. IRIDIA, Institut de Recherches Interdisci-
plinaires et de Developpements en Intelligence Artificielle Universite Li-
bre de Bruxelles, Nov. 2014, p. 36. (Visited on 09/19/2022).

[28] T. Yasuda, K. Ohkura, T. Nomura, and Y. Matsumura. “Evolutionary
swarm robotics approach to a pursuit problem”. In: 2014 IEEE Sym-
posium on Robotic Intelligence in Informationally Structured Space (Ri-
iSS). Dec. 2014, pp. 1–6. doi: 10.1109/RIISS.2014.7009182.

78

https://doi.org/10.1109/WI-IAT.2009.132
https://doi.org/10.1007/978-3-540-77612-3
https://doi.org/10.1109/RIISS.2014.7009182


Declaration of Authorship

I hereby declare that this thesis was created by me and me alone using only
the stated sources and tools.

Nico Winkelsträter Magdeburg, October 25, 2022


	List of Figures
	List of Tables
	Introduction
	Motivation
	Research Questions
	Structure of this work

	Background
	Terminology
	Simulation
	Simulation of the FINken
	Sensor characteristics
	Lift Simulation
	Copter Guidance

	Swarm Intelligence and Swarm Robotics
	Swarm Intelligence
	Swarm Robotics and Evolutionary Robotics

	Evolutionary Algorithms
	Multi-objective Evolutionary Optimization


	State of the Art and Related Work
	Sensor Placement Optimization Using Co-Evolution (SPOC)
	Behavior
	Objectives
	Aggregation Quality
	Motion Quality
	Certainty

	Algorithm
	Encoding
	Mutation and Crossover
	Selection


	Implementation
	Controller
	Ensuring Fairness
	Process Management

	Gazebo
	Communication
	Sensors

	Ardupilot

	Experiments and Results
	Evaluation Scenario
	Hyperparameter Exploration
	Experiments
	Comparison With Reference Individuals
	Inspection of Solutions

	Conclusion and Future Work
	Conclusion
	Future Work

	Experiments and Results
	Bibliography

