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Abstract

This work proposes a hybrid cost estimation approach for purchased products,
which is designed to deal with the limited information and the uncertainty in
the cost for products which are manufactured by suppliers. For this applica-
tion scenario, a realistic cost estimation with common techniques is particu-
larly difficult. The presented approach combats these difficulties by combining
multiple different techniques to overcome their specific weaknesses. This is
achieved by using historical cost data, filtering undesirable data points and
training a machine learning model for the final cost estimation. At the heart
of this approach are the newly developed outlier removal methods based on
a simplified analytical estimation technique and a data envelopment analysis.
These methods filter the historical data to remove parts whose costs are dom-
inated by non-product related cost drivers.

A case study demonstrates the superiority of the proposed hybrid approach
over a stand-alone machine learning model. Additionally, it shows that the
outlier removal methods based on analytical techniques perform best in this
approach. The case study further indicates that the usage of a data envel-
opment analysis for the filtering leads to less realistic cost estimates. Never-
theless, it can be a valid method for applications where cost efficiency takes
utmost priority.
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1. Introduction

1.1. Motivation

The increasing competitiveness on global markets demands for higher quality
products at lower prices. To meet these high expectations of the market,
an accurate estimation of the final product price throughout all stages of its
development cycle is crucial. Roughly 75 % of the costs are fixed after the
design phase, which makes this the most important time for cost estimation,
despite the uncertainties at this point of the development. [72]

The complexity of this task raises further when the products are manufactured
by suppliers. Successful negotiations with the suppliers of such purchased
products can make the difference between a profitable project or an unprofit-
able one for any company. Overpriced products lead to an unnecessary profit
loss and therefore to a decreasing competitiveness of the company. Hence,
knowing the costs of the products in advance can be extremely valuable for
every company to get an additional edge over the competitors on the market.
Nevertheless, the precise prediction of the final cost is difficult even without
the additional uncertainties that occur by the manufacturing by a supplier.

In this scenario, most traditional cost estimation approaches have their diffi-
culties to predict the cost with an acceptable precision. Analytical techniques
require detailed information about the manufacturing process, like the machine
and labour costs, which are usually only available to the supplier. Paramet-
ric and non-parametric estimation models, on the other hand, are negatively
affected by non-product related cost drivers in the historical data, used to gen-
erate them. Prices for purchased products are influenced by additional factors
like the profit margin of the supplier, its free capacities, available machinery
and many more. All of these add additional noise to the historical data and
therefore make an accurate prediction more complicated.
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1. Introduction

1.2. Research Goals

The goal of this thesis is the design of a new approach to accurately estimate
the cost of purchased products. This approach shall overcome the previously
mentioned difficulties with classical cost estimation methods for products man-
ufactured by a supplier. For this purpose, a hybrid cost estimation approach
using Machine Learning (ML) on historical data, which was cleaned before-
hand using different outlier removal methods based on other cost estimation
techniques, is proposed. Herein, the main focus lies on the development of
these new outlier removal methods for this specific product cost estimation
scenario and the evaluation of their influence on the ML model and the final
cost prediction. To achieve this, a case study on deep-drawn sheet-metal parts
is performed and used to gather insights in the behaviour of the outlier removal
methods and the new approach as a whole. Detailed analysis of the perform-
ance of different ML models to identify the most suiting one for product cost
estimation is beyond the scope of this thesis and can be found elsewhere in
literature (ref. Section 3.1).

1.3. Structure of Thesis

After the introduction of this thesis, Chapter 2 covers the theoretical back-
ground of the concepts used in the proposed approach. The fundamentals of
the ML models utilized for the cost estimation and the techniques applied in
the outlier removal process are covered and explained. Afterwards, an over-
view on the different product cost estimation and outlier removal methods
used in literature and their individual strengths and weaknesses is given in
Chapter 3. The details of the proposed hybrid cost estimation approach are
described in Chapter 4. First, the general approach is introduced, followed by
a more detailed presentation of the individual elements, especially the different
outlier removal methods. This is followed by the concrete implementation of
the approach and its evaluation on a case study covered in Chapter 5. Finally,
in Chapter 6 the inferred conclusions of the new cost estimation approach are
given along with future research questions.

2



2. Background

This chapter covers the fundamentals of the concepts applied in this thesis.
It can be used as reference for details of the algorithms, models and methods
used in the proposed cost estimation approach.

2.1. Support-Vector Regression

A commonly used model for classification and regression tasks is the Support-
Vector Machine (SVM). The basic idea of SVMs is the separation (classifica-
tion) or fit (regression) of data points with a hyperplane. This idea was first
introduced by Vapnik and Chervonenkis [70] for binary classification problems.
Later it got extended to regression tasks [25]. Reasons for their popularity are,
inter alia, a well researched theoretical background, their formulation, which
guarantees to find the global optimum, and their versatility, which is achieved
by the numerous kernel functions that can be used to solve non-linear prob-
lems.

Mathematically the Support-Vector Regression (SVR) can be expressed as a
minimization problem on a set X of size N containing feature vectors xi ∈ Rn

and their corresponding real-valued outputs yi ∈ R:

minimize
w,b,ξ,ξ∗

1

2
‖w‖2 + C

N∑
i=1

ξi + C

N∑
i=1

ξ∗i

subject to wTφ(xi) + b− yi ≤ ε+ ξi,

wTφ(xi)− b+ yi ≤ ε+ ξ∗i ,

ξi, ξ
∗
i ≥ 0, i = 1, . . . , N ,

(2.1)

with the weight vector w, the constant b, the regularization parameter C > 0

and ε > 0 [12][69, Chapter 11]. ε defines an interval [yi − ε, yi + ε] in which a
deviation between the predicted and actual value is not penalised — hence, the
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2. Background

name ε-SVR. ξi and ξ∗i are called slack variables and are needed to allow for a
non-perfect fit, whereas φ(xi) is the mapping of xi in another space, defined
by the kernel function used for the SVR.

The problem from (2.1) can also be formulated in its equivalent dual form:

minimize
α,α∗

1

2
‖(α−α∗)‖2K(xi,xj) + ε

N∑
i=1

(αi + α∗i ) +
N∑
i=1

yi(αi + α∗i )

subject to
N∑
i=1

(αi − α∗i ) = 0,

0 ≤ αi, α
∗
i ≤ C, i = 1, . . . , N ,

(2.2)

with the kernel function K(xi,xj) = φ(xi)
Tφ(xj) [12][69, Chapter 11].

In case of a linear SVR, the kernel function is calculated by the dot product
K(xi,xj) = xTi xj, which means a hyperplane is fitted to the original data
points without any transformation. For non-linear fits, the original data is
transformed into another space in which the data can be fitted with a hyper-
plane. For this transformation, a variety of different kernels like the polyno-
mial K(xi,xj) = (xTi xj)

d or the Radial Basis Function (RBF) K(xi,xj) =

exp (−γ‖xi − xj‖2) can be used. In these cases, the hyperplane is fitted to
the transformations of the original feature vectors resulting in a non-linear fit
in the original space. One advantage of SVMs is that the calculation of the
mapping of the feature vectors φ(xi) is not necessary; only K(xi,xj) needs to
be computed. Depending on the complexity of the mapping, this can speed
up the computation tremendously, e.g. for the RBF kernel where the feature
vectors are mapped into an infinite feature space.

2.2. AdaBoost Forest

Boosting is a technique which combines weak estimators to an ensemble with
a performance superior to any of the individual models. This is achieved by
using different subsets of the training data for each estimator. In comparison
to bagging where these subsets are drawn randomly, boosting focuses more on
the data samples which are hard to predict. This focus is realized by training
multiple estimators iteratively, while the probability of a data sample being
chosen for the training of the current estimator depends on the prediction
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2.2. AdaBoost Forest

error for this sample of the previous estimator. The first algorithm using this
idea was proposed by Schapire in 1990 [63]. Several other implementations
of this idea followed until the most commonly used AdaBoost algorithm was
introduced by Freund and Schapire in 1996 [30].

In this thesis, the AdaBoost.R2 algorithm introduced by Drucker [24] with a
slight extension is used. Given a set X of size N containing multiple feature
vectors xi ∈ Rn and their corresponding real-valued outputs yi ∈ R, this
algorithm initially assigns to each sample a weight wi = 1. Then the following
procedure is repeated until the desired number of estimators M is reached:

Algorithm 1: Training procedure according to AdaBoost.R2
for m = 1 to M do

for xi ∈ X do
pi ←− wi∑N

i=1 wi

draw N samples from X according to their probability pi
train estimator on drawn samples
for xi ∈ X do

L
(m)
i ←− |ŷ(m)

i −yi|
D

L̄m =
∑N

i=1 L
(m)
i pi

βm = L̄m/1−L̄m

for xi ∈ X do
wi ←− wiβ

α(1−Li)
m

For the training of a new estimator m, N samples are drawn with a probability

pi =
wi∑N
i=1wi

(2.3)

from X with replacement. After training of the estimator on this subset, the
loss L(m)

i for each sample is calculated with

L
(m)
i =

|ŷ(m)
i − yi|
D

, (2.4)
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2. Background

where ŷ(m)
i is the prediction of estimator m for a particular sample xi, yi is

its real target value and D = sup |ŷ(m)
i − yi|, i = 1, . . . , N . Subsequently, the

average loss

L̄m =
N∑
i=1

L
(m)
i pi (2.5)

and the uncertainty measure

βm =
L̄m

1− L̄m
(2.6)

are determined. With βm the weight of each sample for the next round can
be adjusted by the following rule: wi → wiβ

α(1−Li)
m . The shrinkage parameter

or learning rate α ∈ (0, 1] is added here to the original algorithm by Drucker
as an additional measure against overfitting. Having M estimators after the
training, the final prediction is determined from the individual predictions of
each estimator ŷ(m)

i by the weighted median defined by

ŷ
(ensemble)
i = inf

ŷi ∈ Ŷi :
∑

m:ŷ
(m)
i ≤ŷi

log

(
1

βm

)
≥ 1

2

M∑
m=1

log

(
1

βm

) . (2.7)

In theory, the AdaBoost algorithm can be applied to any estimator. However,
a common choice is a Decision Tree regressor, since it is computationally cheap
and because of its simple hyperparameter tuning. Using a Decision Tree for
regression means using a sequence of binary splits on features to partition the
input space of a data set X [7, Chapter 8]. Figure 2.1 shows a graphical
representation of this process: Node n1 contains the whole set X which gets
split into two subsets in n2 and n3. The splitting is then repeated with the
child nodes until the resulting nodes meet certain stopping criteria. The end
node of each branch is called terminal or leaf node, represented as a quadratic
node in the figure. These leaf nodes contain one or multiple elements of X.

Given a node n with a subset S of X, any possible split τ(f, t) by feature f
with threshold t divides S into the two subsets

SL = {(xi, yi) | xf ≤ t} (2.8)

and

SR = {(xi, yi) | xf > t} . (2.9)

6



2.2. AdaBoost Forest

Figure 2.1.: Structure of a Decision Tree Regressor [7, Chapter 8]

The best split τ ∗(f, t) maximizes

∆R(S, τ) = R(n)− |SL|
|S|

R(nL)− |SR|
|S|

R(nR) , (2.10)

where R(n) is the Mean Squared Error (MSE) of node n

R(n) =
1

|S|
∑
i∈S

(yi − ŷ(n))2 (2.11)

and ŷ(n) is the predicted target value of node n calculated by the mean of all
yi in this node. [7, Chapter 8][56]

Splitting according to the best split is performed iteratively until a certain
stopping criterion is met. The following criteria are commonly used:

• Maximum allowed depth in tree is reached.

• Maximum number of allowed leaf nodes is reached.

• Any further split would result in a node with less samples than allowed.

• Any further split would result in ∆R(S, τ) being below a certain
threshold.

7



2. Background

2.3. Multilayer Perceptron

The research on Artificial Neural Networks (ANNs) began in the early 1940’s
and was heavily inspired by the human nervous system. McCulloch and Pitts
[50] showed in 1943 that any logical expression can be described by a network
of neurons. Since then, a lot of researchers contributed to develop ANNs for
all kind of different tasks.

For regression, a special type of feed-forward network, called Multilayer Per-
ceptron (MLP), is commonly used. MLPs are an expansion of the basic Per-
ceptron introduced by Rosenblatt [58] in 1958. Figure 2.2 shows the basic
structure of a MLP.

The network structure of MLPs can be described with graphs. Kruse et al. [42,
Chapters 4–5] define a r-layered Perceptron as a directed graph G = (U,C)

with vertices u ∈ U called units or neurons and edges c ∈ C called connections.
The vertices either belong to the set of input neurons Uin, the set of output
neurons Uout or the set of hidden neurons Uhidden. For these sets the following
conditions hold true:

U = Uin ∪ Uout ∪ Uhidden , (2.12)

Uin 6= ∅ , Uout 6= ∅ , Uin ∩ Uout = ∅ , Uhidden ∩ (Uin ∪ Uout) = ∅ , (2.13)

Uhidden = U
(1)
hidden ∪ . . . ∪ U

(r−2)
hidden , (2.14)

∀1 ≤ i < j ≤ r − 2 : U
(i)
hidden ∩ U

(j)
hidden = ∅ , (2.15)

C ⊆
(
Uin × U (1)

hidden

)
∪

(r−3)⋃
i=1

U
(i)
hidden × U

(i+1)
hidden

 ∪ (U (r−2)
hidden × Uout

)
.

(2.16)

Each neuron can only be part of one layer and the input and output layer
need to contain at least one neuron each. The hidden part of the network
consists of one or multiple single layers containing one or multiple neurons
each. Connections are only possible between consecutive layers, which means
that information is transferred from the input layer to the output layer without
any cycles. This classifies MLPs as feed forward networks.

Furthermore, to each connection (u, v) ∈ C from neuron u to neuron v a
weight wvu is assigned and each neuron u ∈ U possesses three additional values
computed by three functions inside the neuron:

8



2.3. Multilayer Perceptron

⋮

⋮ ⋮ ⋮

⋮
⋮

⋮

Figure 2.2.: Structure of a r-layered Perceptron [42, Chapter 5]

• network input netu, network input function f (u)
net

• activation actu, activation function f (u)
act

• output outu, output function f
(u)
out

The network input function processes the incoming inputs at a neuron. For
neurons in the hidden and output layer it is the weighted sum of all inputs
minus a bias term θ:

∀u ∈ Uhidden∪Uout : f
(u)
net = wT

u inu− θu =
∑

p∈pred(u)

(wupoutp)− θu , (2.17)

where inu is the input vector, wu is the associated weight vector for all in-
coming connections for neuron u and θu is a constant called bias. With the
definition that all neurons of the previous layer having a connection to neuron
u are called predecessors of u, pred(u) = {p ∈ U | (p, u) ∈ C}, the network
input function can be reformulated as the weighted input of all outputs of the
predecessor neurons subtracted by the bias. For neurons of the input layer,
the network input is one dimension of the input vector x:

∀u ∈ Uin : f
(u)
net = xi . (2.18)

The activation function uses the network input to calculated how much the
neuron gets activated. Various different functions are used for this purpose.
Some of the most common ones are shown in Appendix A Figure A.1. Usually,
activation functions are monotonic and differentiable, but these criteria are
not mandatory. The output function of a neuron is used for scaling of the
activation. Therefore, mostly linear functions are used. [42, Chapters 4–5]

9



2. Background

Assuming a set X of size N containing multiple feature vectors xi ∈ Rn and
their corresponding real-valued outputs yi ∈ R, the input layer of the MLP
consists of n neurons. Since the target variable is one-dimensional, the output
layer of the MLP contains only one neuron. The hidden layers in between can
vary in their number and size according to the complexity of the problem.

Given this set X, for the training of a MLP the weights of each connection
and the bias of each neuron are first initialised — often randomly — and then
iteratively adjusted to reduce the error between the prediction ŷi of the network
and the target variable yi. This is achieved by minimizing a loss function l

which captures the prediction error. The most wide-spread loss function is the
MSE calculated by

MSE =

∑N
i=1 (ŷi − yi)2

N
. (2.19)

Besides the MSE, a variety of other loss functions can be used. Neverthe-
less, the MSE has some properties that make it so versatile; e.g., it is fully
differentiable in contrast to other losses, like the Mean Absolute Error. This
simplifies the computations in the training phase of the network. Further, it
stronger penalises larger errors due to the quadratic error term, which helps
the network to converge faster.

During the training the adjustments of the weights are calculated by a variation
of gradient descent and the so-called error backpropagation. To simplify the
calculations, the biases are usually converted into an additional constant input
of one with a corresponding weight for each neuron. The gradient descent
method computes the gradient of the loss function w.r.t. the current weights
in the network and updates them with a small step in the opposite direction
of the gradient (since the loss should be minimized and the gradient points in
the direction of the steepest increase). The gradient of the loss function l for
neuron u can be computed with

∇wul =
∂l

∂wu

=
∂l

∂outu
∂outu
∂actu

∂actu
∂netu

∂netu
∂wu

, (2.20)

where ∂netu
∂wu

equals the inputs of neuron u. For neurons in the output layer, the
other terms are only dependent on the functions used for output, activation
and loss and hence, can be calculated directly. For neurons in the hidden
layers, the output influences the loss indirectly through the successor neurons

10



2.4. Data Envelopment Analysis

of u, that are succ(u) = {s ∈ U | (u, s) ∈ C}. Hence, ∂l
∂outu

depends on all the
neurons that are between neuron u and the output layer:

∂l

∂outu
=

 ∑
s∈succ(u)

∂l

∂outs
∂outs
∂acts

∂acts
∂nets

∂nets
∂ws

wsu

 . (2.21)

With this formula, the gradient can be computed layer-wise from the output
to the input layer, which is why this method is called backpropagation. After
all gradients are computed, the weights of each neuron are updated according
to

∆wu = −η∇wul , (2.22)

with the real-valued learning rate η ∈ (0, 1]. [42, Chapter 5]

The update of the weights can be performed after each training sample (online
learning), after one iteration over the whole training data (batch learning) or
after multiple samples (mini-batch learning). For batch and mini-batch learn-
ing the individual updates are accumulated to perform less frequent updates.

One of the reasons for the popularity of MLPs is their flexibility. Given enough
hidden neurons, any function can be fitted, regardless of its complexity. How-
ever, this characteristic is also a weakness of MLPs as it can result in overfit-
ting. A common technique to regularize ANNs, besides reducing the number
of hidden neurons, is using Dropout. The idea behind Dropout is to randomly
drop neurons and their connections from the network during training and was
proposed by Hinton et al. [33]. For each training step, every hidden neuron is
present with the probability p. Non-present neurons and their connections are
deleted for this step. The Dropout is only active while the network is trained;
after training, all neurons are active but all weights are adjusted by the factor
p to compensate the additional neurons. This method can be interpreted as
a computationally efficient way to train many different MLPs and using their
averaged predictions in application. Instead of describing the probability p of
a neuron to be present, often the Dropout rate 1 − p is used to indicate how
likely it is for a neuron to be dropped.

2.4. Data Envelopment Analysis

In the field of operations research the Data Envelopment Analysis (DEA) is
often used to compare entities, like hospitals, educational institutions or com-
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2. Background

panies, based on their efficiency. It was initially proposed by Charnes, Cooper
and Rhodes in 1978 [13]. The interesting characteristic of the DEA is its pos-
sibility to take multiple inputs and outputs for each entity, also called Decision
Making Unit (DMU), into account. The efficiency is defined as the ratio of
output to input, which makes the DEA approach extremely flexible in its ap-
plication, since any numerical measure can be used as an input or output. This
was also shown by Defersha, Salam and Bhuiyan [22] who proposed a product
cost estimation approach based on a DEA.

Given a data set X of N DMUs, with an input vector xi ∈ Rn and an output
vector yi ∈ Rm, the original DEA model, called CCR model, maximizes the
efficiency, which is the ratio of the weighted output to the weighted input with
the two weight vectors u and v, for every DMU d according to

maximize
u,v

θ =
uTd y

(d)
i

vTd x
(d)
i

subject to
uTd y

(k)
i

vTd x
(k)
i

≤ 1 , k = 1, . . . , N ,

u
(d)
1 , . . . , u(d)

m ≥ 0 ,

v
(d)
1 , . . . , v(d)

n ≥ 0 .

(2.23)

The constraints imply that the efficiency value θ lies in the interval [0, 1],
assuming strongly positive inputs and outputs. In addition, they ensure that
the best weights for DMU d would not lead to an efficiency outside of [0, 1],
when they are applied for any other DMU k in the data set. [18, Chapter 2]

The DEA formulation in (2.23) can be reformulated by The equivalent linear
formulation

maximize
u,v

θ = uTd y
(d)
i

subject to vTd x
(d)
i = 1 ,

uTd y
(k)
i ≤ vTd x

(k)
i , k = 1, . . . , N ,

u
(d)
1 , . . . , u(d)

m ≥ 0 ,

v
(d)
1 , . . . , v(d)

m ≥ 0 .

(2.24)

In this representation the constraint of xi and yi being strongly positive can
be relaxed to a semipositive constraint, allowing for zero values in the vectors
unless all components are zero. [18, Chapter 2]
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Figure 2.3.: DEA example with two outputs and one input [18, Chapter 1]

Figure 2.3 shows a simple example with two outputs and one input. The
DMUs A, B and C are efficient (θ = 1) and build an efficiency frontier. Any
point on this frontier is a semipositive combination of these three points and
considered efficient. Since all DMUs are compared to the efficiency frontier,
all points within the area enclosed by the efficiency frontier and the axes — in
this example the DMUs D and E — are considered inefficient (θ < 1). The
efficiency value of D can be computed with

θD =
OD

OD∗
, (2.25)

where D∗ is the radial projection of D onto the efficiency frontier [18,
Chapter 1].

One downside of this original definition is its assumption of constant returns
to scale, meaning that for every DMU with input xi and output yi a DMU
with cxi and cyi for any positive c is possible. However, such behaviour is
not always observed in reality; manufacturing processes or even companies
usually only scale with constant returns for minor changes in size. To make
the DEA method also applicable to problems with variable returns to scale, the
BCC model was developed by Banker, Charnes and Cooper [5]. This model
modifies the DEA so that the efficiency frontier becomes a convex hull and
any efficient point has to be a convex combination of the efficient DMUs. The
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linear formulation of the BCC model adds one scalar u0 to the CCR model
(2.24) to obtain

maximize
u,v

θBBC = uTd y
(d)
i − u0

subject to vTd x
(d)
i = 1 ,

uTd y
(k)
i − u0 ≤ vTd x

(k)
i , k = 1, . . . , N ,

u
(d)
1 , . . . , u(d)

m ≥ 0 ,

v
(d)
1 , . . . , v(d)

m ≥ 0 ,

(2.26)

where u0 is free of any constraints. This change incorporates the fact that the
achievable maximum efficiency might change when the inputs are scaled up or
down. [18, Chapter 4]

2.5. Kolmogorov-Smirnov Test

To test whether a data set follows a specific distribution, there are multiple
statistical tests available. One of the most common ones for non-normal data is
the two-sided Kolmogorov-Smirnov (KS) test. As the name suggests, this test
was developed by Kolmogorov [41] and Smirnov [66]. It is a non-parametric test
which computes a distance between the Empirical Distribution Function (EDF)
FN(x) and the Cumulative Distribution Function (CDF) F (x) of a specific
continuous distribution. Given a set X of size N of data points, the EDF is
described by

FN(x) =
1

N

N∑
i=1

1(−∞,x](X) , (2.27)

with

1(−∞,x](X) =

{
1 if X ≤ x

0 otherwise .
(2.28)

The KS statistic is the maximum distance DN between the CDF of the tested
distribution and the EDF, as seen in Figure 2.4. Thus, it can be calculated by
[31, Chapter 4]

DN = sup
x
|FN(x)− F (x)| . (2.29)
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Figure 2.4.: Kolmogorov-Smirnov statistic (black arrow) of the empirical dis-
tribution function (blue) of data from the case study compared to
a cumulative distribution function of a fitted Rayleigh distribution
(red)

The null hypothesis H0 of the KS test is that all data points are drawn from
the tested CDF:

H0 : ∀x : FN(x) = F (x) . (2.30)

Consequently, the alternative hypothesis H1 of the two-sided test is

H1 : ∃x : FN(x) 6= F (x) . (2.31)

One major advantage of this test is that
√
NDN converges to the Kolmogorov

distribution forN →∞ if the null hypothesis is true and the tested distribution
continuous. Consequently, the test statistic DN is independent of the tested
CDF and the p-value to test the null hypothesis is defined as

P (D < K | H0) = 2
∞∑
i=1

(−1)i−1 exp
(
−2i2D2

)
, (2.32)

where D =
√
NDN and K is a random variable following the Kolmogorov

distribution. [31, Chapter 4]
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A disadvantage of the KS test is its tendency to overestimate the p-values when
the distribution parameters are estimated from the data set itself. This means
the formula for the p-value in (2.32) is not valid for CDFs which have been
fitted to the data set beforehand and it has to be calculated with Monte Carlo
methods [21, Chapter 4]. The method applied in this thesis was proposed by
Clauset, Shalizi and Newman in 2009 [16] and is described in Algorithm 2.

Algorithm 2: Simulation procedure for a corrected estimate of the p-value
for the Kolmogorov-Smirnov test
estimate the distribution parameters from N data samples
calculate KS statistic DN for the estimated distribution
counter ←− 0

for i = 1 to M do
sample data set of size N from the original estimated distribution
estimate the distribution parameters for the sampled data set
calculate KS statistic D(i)

N

if D(i)
N > DN then
counter ←− counter + 1

P (H0)←− counter
M
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The following sections present methods and techniques used for product cost
estimation and outlier detection. To give an overview on the methods in these
fields, the most common and recent approaches and their individual strengths
and weaknesses are presented.

3.1. Product Cost Estimation

Product cost estimation is of great importance for any producing company. It
is essential for a competitive and profitable business. Because of this, large
efforts have been put into the research of new and more accurate estimation
approaches. According to Niazi et al. [53], product cost estimation techniques
can be classified into two main categories: quantitative and qualitative meth-
ods.

Quantitative cost estimation techniques describe the product cost as a function
of cost-related variables. They can be further divided into parametric, non-
parametric and analytical approaches [38]. In parametric models, the type of
relationship/function between the cost drivers and the cost is defined a pri-
ori. According to this predefined function, the model has a fixed number of
parameters. In contrast, non-parametric approaches use models which fit an
unknown function to the data. This allows for more flexibility in the descrip-
tion of the relationship between the cost drivers and the cost. In these models
the number of parameters is not fixed and can vary depending on the data set.

Parametric and non-parametric models are built with statistical or ML tech-
niques and the use of historical data. Their cost drivers usually contain vari-
ables which are directly linked to product features (e.g. weight, material).
Recent research revolves around developing parametric cost models for differ-
ent product types. Martinelli et al. [49] proposed a parametric approach for
gas turbines, while Cavalieri, Maccarrone and Pinto [11] developed one for
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brake disks, to name two examples. With the rise of ML, in particular ANNs,
these techniques were investigated for cost estimation intensively. Ning et al.
[54] used deep-learning techniques to automatically extract product features,
which were then used to train different ML models. In addition, ML-based
cost prediction was used for a variety of different product types [26, 44, 46].
But also methods from other fields were applied, like the DEA approach for
predicting the lowest achievable cost for landing gears of aircraft proposed by
Defersha, Salam and Bhuiyan [22].

In contrast to the data-driven approach of parametric and non-parametric
techniques, analytical models interpreted the cost as a sum of resources and
operations [15, 53]. They break up the product cost in partial costs for ma-
terial, manufacturing and additional activities in varying degrees of detail,
depending on the focus of the particular model. This also includes cost drivers
which are not directly linked to the product, e.g. logistic or detailed machinery
cost. Each of the partial costs are described by its own, either with an indi-
vidual function or other methods like look-up tables etc., and then summed
up to obtain the total product cost. This bottom-up approach allows for a
fine differentiation between manufacturing scenarios, contrary to parametric
or non-parametric models, where the non-product-related cost drivers have to
be incorporated in the product features. Recent literature consists of several
applications of the analytical cost method to various product types [29, 47].

Qualitative product cost estimation relies on experience and historical cost
data. There are two types of qualitative approaches: intuitive and analogical
techniques [15, 53]. Intuitive cost estimation uses expert knowledge and data
from previous products. Based on similar existing products, the product cost
is intuitively estimated by comparisons performed by experts.

Analogical techniques also infer their cost estimation from a comparison with
similar historical products but with the help of decision-support-systems.
These systems use rules, constraints and product databases to help adjust-
ing the cost based on the difference to the historical products [15]. Recent
analogy-based approaches rely on Case-Based Reasoning, Decision Trees, Ge-
netic Algorithms or probability distribution optimization methods [4]. Further
research was done on new technologies to identify similar products. Ćwikła and
Bańczyk [20] proposed a semantic net approach to search for similar products
in a database and Mrozinski et al. [52] used a new technique based on k-Nearest
Neighbours.
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Technique Product
Knowledge

Expert
Knowledge

Historical
Data

Parametric Medium High Medium
Non-parametric Medium Low High
Analytical High High Low
Intuitive Low High Medium
Analogical Low Medium High

Table 3.1.: Requirements for product cost estimation techniques

Table 3.1 shows a rough overview of the requirements for the different product
cost estimation approaches. In general, it can be recorded that qualitative es-
timation techniques are more applicable in earlier design phases of the product,
where the design is not yet finalised. They compensate their lack of knowledge
about the final design with expert knowledge or big data sets of historical data.
Quantitative methods usually require a more mature design of the product.
The three types differ mainly in the need of expert knowledge and historical
data.

To combat the disadvantages of each product cost estimation technique, suit-
able ways to combine them were investigated. Such hybrid approaches try to
lower the different requirements and/or combine strengths of the individual
techniques. An example for such a hybrid, was developed by Díaz et al. [23],
who used a method based on analogical and parametric techniques. Their
method uses clustering to identify similar groups of products and then per-
forms a polynomial regression on each cluster. Another example is the com-
bination of parametric and non-parametric techniques, which Sajadfar and Ma
[62] applied to estimate the cost of welded products.

3.2. Outlier Detection

Like any other field dealing with data, product cost estimation struggles with
outliers in the cost data. Since outliers are such a common issue, numerous
methods have been developed for their identification. The precise definition of
outliers can vary based on the field and the specific task. Generally, they can
be described as data points not aligning with the expected behaviour of the
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data set, having values that are far off the expected or average value or showing
dissimilarity to the normal data in some characteristics [67, Chapter1]. Since
outliers are prominent in almost any data analysis, over the time, a substantial
amount of research was carried out on their detection. Each scientific com-
munity came up with their own ways and methods to deal with these data
points, but overall they can be classified in three categories [2, Chapter 1][6]:

• Supervised methods assume at least partially labeled data for normal
data and outliers.

• Semi-supervised methods work an data sets where the non-outliers are
(partially) labeled.

• Unsupervised methods try to distinguish outliers without any labeled
data.

Further, only the unsupervised methods are investigated, as for regression
tasks this is the most common scenario. Aggarwal [2, Chapters 2–6] gives an
extensive overview on them, from which the most common ones are briefly sum-
marized in the following paragraphs. Generally, unsupervised outlier detection
techniques can be categorized in removal of extreme values, model-based and
proximity-based outlier detection.

Techniques which identify extreme values base on the idea that values in a
data set are not uniformly distributed and the occurrence of extreme values is
unlikely. Therefore, data points with such extreme values have a high prob-
ability of being outliers. One simple and commonly used method of this kind
is the z-score method [19, 59]. The z-score describes the distance between a
value and the mean in relation to the standard deviation. Data points with
z-scores over a certain threshold are omitted. In case a Gaussian distribu-
tion cannot be assumed, the general concept can be applied to other types of
distributions. Two major disadvantages of this technique are that a certain
distribution has to be assumed and it can only be applied to univariate data.
Hence, multivariate data can only be analysed one feature at a time.

To overcome the restriction on dimensionality, this idea can be extended to
the multidimensional space, e.g. with the Mahalanobis distance. The distribu-
tion of the data is estimated by a multivariate Gaussian distribution and the
Mahalanobis distance between a data point and the mean of the distribution
can be interpreted as the distance to the mean in relation to the standard
deviations. This approach was used by Laurikkala, Juhola and Kentala [43]
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for example. Hubert, Debruyne and Rousseeuw [34] proposed a variation of
this method, which is more robust to outliers in the initial estimation of the
distribution. Nevertheless, these methods still assume a certain distribution
type and are therefore only applicable if this assumption is valid.

Another technique to remove extreme values are depth-based approaches. Con-
trary to the statistical methods, these construct a convex hull around the data
and remove the edge points of this hull. This process is repeated iteratively
until a certain depth is reached. In this way, the most outer data points are
removed without the assumption of any distribution. Examples for this type
of outlier detection can be found in [36] and [61].

By design the extreme value approaches can only remove outliers located at
the edges of the data set. Nevertheless, outliers can also occur in more central
positions.

Another type of outlier identification are the model-based approaches, which
can detect outliers independently of their location in the data set. They de-
scribe the relationships between the variables with models and detect the data
points with high deviation from it. The most basic approach is to fit a hyper-
plane to the data via Linear Regression. In order to deliver good results, the
fitted hyperplane should only reflect the behaviour of the inliers. Since Linear
Regression is very sensitive to outliers, especially at the edges, extensive re-
search was done to increase the robustness of the linear fit. An overview over
common methods can be found in [59] and [60].

For higher dimensional data, Principal Component Analysis (PCA) might be a
better option. This method is used for dimensionality reduction by generating
new features (principal components) from linear combinations of the original
ones. These principal components are uncorrelated and ordered by their vari-
ance [37, Chapter 2][65]. As outliers do not follow the correlations of the rest
of the data set, they are identifiable after the transformation with a graphical
or distance based approach. PCA for outlier detection is a well researched
topic and many examples for its application are available [10, 27, 65].

In addition to linear approaches, also SVMs can be used to fit the data. The
main advantage of SVMs is that they can model non-linearities when the
kernel-trick is used. This makes them more flexible and applicable for a wider
range of scenarios. Two examples for outlier detection via SVMs can be found
in [48] and [64].
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The most flexible model-based approach are auto-encoders, which use ANNs
to encode the data. These encodings can be highly non-linear and can be used
to detect outliers in data sets. As the encoding compresses the information,
the auto-encoder focuses on the main relationships in the data. Since outliers
deviate from these relationships, their deviations before and after their en- and
decoding are higher than the ones of inliers [9]. Applications of this method
can be found in [57] and [68].

The performance of model-based approaches heavily depends on an accurate
representation of the actual relationships in the data. Their quality can suffer
from a large amount of outliers in the data and wrong model assumptions.
Additionally, these methods are only reasonable if correlations between the
features exist.

Proximity-based techniques define outliers by their location in relation to other
data points. They can be divided in three subcategories. Cluster-based al-
gorithms like proposed in [28] or [35] find groups of similar data points in the
data set. Any point outside a cluster or inside a small enough cluster can be
considered an outlier.

Distance-based algorithms use the distance of points to their neighbours to
identify outliers. Since outliers are usually isolated, their average distance to
their neighbours is high in comparison to other data points. This idea was
first introduced by Knorr and Ng [40]. Commonly, variations of k-Nearest
Neighbours [32] or an ensemble of Decision Trees like Isolation Forests [45] are
used to detect isolated data points.

Both, cluster-based and distance-based approaches do not perform well, when
the density of data points strongly varies in the data set. Since these tech-
niques apply a fixed threshold to the whole data set (globally), they struggle
to capture local anomalies. This weakness led to the proposal of density-based
approaches, which compare the density around a data point to the density in
their local neighbourhood. The three most popular approaches of this type
are OPTICS [3], the related Local Outlier Factor (LOF) [8] and the Local
Correlation Integral (LOCI) [55].

Proximity-based techniques are ideal for data sets with multiple clusters. This
can be highly beneficial for classification but is usually not relevant for regres-
sion tasks. Additionally, the variability of results between different approaches
is high. Therefore, special care in the selection of the algorithm used for a
particular data set is advised.
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Table 3.2 shows a summary of the strengths and weaknesses of the three dif-
ferent categories of outlier detection techniques.

Type Advantage Disadvantage

Extreme
Values

Simplistic concept Only coverage of edges of
the data set

Solid probabilistic
foundation

Assumption of a certain
distribution

Model-based Coverage of whole data
space

Tendency of overfitting

Assumption of correlated
features

Proximity-
based

Coverage of whole data
space

High variability in results

Identification of local
outliers

Limited applicability for
regression

Table 3.2.: Advantages and disadvantages of outlier detection methods
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Using historical data for cost estimation with classical parametric or non-
parametric methods has one major disadvantage. All data points are con-
sidered as equally valid and therefore it is assumed that all of them reflect the
cost drivers equally well. However, this assumption is often not met in reality,
especially when the parts are not produced in-house but bought from suppli-
ers. Consequently, variations of the cost based on parameters not related to
the product have to be expected. Some of these influencing factors can be the
capacity and availability of certain machinery and tools at the suppliers, the
success of price negotiations, etc. All of these can lead to deviations from the
expected price based on the product-related cost drivers. Furthermore, these
additional cost factors are normally not known to the buyer and therefore
impossible to predict for future products.

To deal with this problem, this thesis investigates different methods to filter
the historical data and eliminate data samples, whose price is dominated by
non-product related cost drivers. Based on these outlier detection methods, a
proposal for a new hybrid cost estimation approach is developed, which focuses
on the prediction of a realistically achievable market price for purchased parts.

The proposed method consists of two main elements, as depicted in Figure 4.1:
the filtering of the historical cost data and the model building with ML tech-
niques. The identification of outliers is either based on an analytical cost
model, a DEA or both and combines ideas from model-based and statistical
outlier detection. The analytical cost model and the DEA are used to model
the product cost and compare this estimate with the actual cost. Products
with a large discrepancy between the two are then removed from the data set.
After this removal, the filtered data is used to build a ML model to estimate
the cost.
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Figure 4.1.: Overview of the proposed cost estimation approach

4.1. Filtering of Historical Data

In this section, the different ways of removing outliers from the historical data
set are discussed in detail. Two different ideas are the base for the three pro-
posed outlier removal approaches. The first method uses a simplified analytical
cost model to identify outliers, while the second one relies on a DEA. The third
approach combines both. For each approach two variants are presented and
explained in detail.

4.1.1. Deviation from Analytical Cost Model

One way to remove data points which do not reflect the product-related cost
drivers is the comparison of the actual cost (the price the part was purchased
for) and the theoretical cost from an analytical cost model. The analytical
model breaks down the cost into the individual different cost drivers, like
machine costs, labour costs, material costs, etc. The model currently used to
capture the cost of the deep-drawn sheet-metal parts in the later introduced
case study (ref. Section 5.1) splits the total product cost ctotal into material
costs cm, costs for the manufacturing process cp, packaging costs cpkg and rates
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for Selling, General and Administrative Expenses rSGA and the profit of the
supplier rprofit. The formula describing this split is

ctotal =
cm + cp (1 + rSGA) + cpkg

1− rprofit
. (4.1)

The material cost depends on the material needed for the manufacturing pro-
cess mgross, the price per kilogram for the material pm, how many of the parts
are produced with defects and therefore are considered scrap rs and how ex-
pensive it is to handle the material rh. In addition, the resale price for the scrap
material ps produced has to be considered. The amount of additional scrap
material per part is the difference between the gross weight and the weight of
the final part mnet. With these parameters, the material cost is described by

cm = mgross · pm (1 + rh)
1

1− rs
− ps (mgross −mnet) . (4.2)

The process cost is mainly driven by the operating costs of each machine and
the labour costs. Important for both of them is the time needed to finish one
product, called cycle time tc. Additionally, the hourly costs for the machines
cM and the workers cw, the time to set up the machines tsetUp, the amount of
parts produced in one batch Nbatch and the time in which the machine is not
productive because of delays or maintenance, which is covered in the overall
equipment effectiveness OEE, influence the process cost. Given NM different
machines, each of them operated by N (i)

w workers, the process cost is given by

cp =

NM∑
i=1

c
(i)
MFG+

c
(i)
setUp

Nbatch
=

NM∑
i=1

t(i)c

(
c

(i)
M +N

(i)
w c

(i)
w

)
OEE(i) (1− rs)

+
t
(i)
setUp

(
c

(i)
M +N

(i)
w c

(i)
w

)
Nbatch

 .

(4.3)

Unfortunately, all the parameters in (4.3) are usually not know for purchased
parts. However, they can be estimated by experts with enough know-how
in these processes. Nonetheless, since this is a time-consuming and therefore
expensive procedure it is not reasonable to estimate the cost breakdowns for all
parts in a data set. Instead, reference processes can be identified by a detailed
analysis of only a fraction of the data and the corresponding cost breakdowns.
These reference processes should reflect typical cost structures for different
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manufacturing scenarios and enable a simplified calculation of the process cost
with

cp = c
(ref)
MFG +

c
(ref)
setUp

Nbatch
. (4.4)

The description of the process cost is now based on the manufacturing and set-
up costs of the reference process. The batch size remains the only unknown
variable. For its estimation, the strongly correlated yearly production volume
of the product can be used in combination with the estimated batch sizes of the
detailed cost breakdowns. Given these two, the batch size can be computed by
linear interpolation of the estimated batch sizes in the cost breakdowns based
on the corresponding yearly volume.

But not only the process cost contains unknown parameters; the process scrap
rate rs, the handling rate rh and the gross weight of the material mgross, needed
to calculate the material cost in (4.2), are also unknown for historical data.
Similar to the cost drivers of the manufacturing process, they can be estimated
from the cost breakdowns. For the gross weight, the material yield of the
reference processes can be analysed to obtain a ratio between net and gross
weight of the parts. The two rates can be extracted directly from the detailed
cost analysis. In a similar way, values for the packaging cost and the SGA and
profit rates can be extracted. All other cost drivers, like material prices, net
weight of the parts and yearly production volumes, are usually known even
when the products are not produced in-house.

The final step to complete the analytical cost model is the identification of
rules for which parts the reference scenarios can be applied. These rules re-
flect the physical and economic boundaries of the processes, e.g. the maximum
weight of a part machined with a certain equipment or the level of automation
still profitable for a given yearly production volume. Given enough detailed
cost breakdowns, these rules can be extracted by a thorough analysis or altern-
atively, they can be given by experts. After finishing these steps, a simplified
analytical cost model is built, which only requires inputs usually known for
purchased products.

The analytical model can now be used to remove outliers in the historical
data to filter out parts for which non-product related cost drivers dominate.
A straightforward idea to achieve this goal is to eliminate parts in the data
set according to the deviation between the theoretical cost from the analytical
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model and the actual price payed, as shown in Figure 4.2a. First, the rules
defined in the analytical model are applied to identify which reference process
is applicable for each part. Then, the theoretical costs of these scenarios are
calculated. In case multiple scenarios are valid, an additional rule is needed to
decide for only one of them. This rule can be to decide always for the process
with the lowest absolute deviation from the historical cost or to favor the
cheapest scenario. The former shifts the focus slightly more on the historical
data, whereas the latter puts more emphasis on the lowest price achievable
according to the analytical cost model. After assigning each part an analytical
cost, the relative deviation from this cost

d =
chistorical − canalytical

canalytical
(4.5)

is calculated and decides whether to keep or to discard the part. Any data
with a d-value above a certain threshold will be excluded.

(a) Variant 1 (b) Variant 2

Figure 4.2.: Flowcharts of the two proposed variants for outlier removal based
on the deviation to an analytical cost model
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The second variant of this analytical approach, shown in Figure 4.2b, tries to
incorporate even more theoretical knowledge to filter the data. As mentioned
before, the price for purchased products can vary based on non-product re-
lated cost drivers. But this spread is not expected to be symmetrical around
the analytical cost, since analytical cost models predict idealized costs, which
are located at the lower end of the spectrum. Additionally, a lower limit for
the deviation should exist, which is located at the point where the supplier
starts to operate at a loss. On the other hand, no such limit exists for more
expensive prices; they just are more unlikely to occur the more overpriced the
parts are (compared to the analytical model). Based on these considerations,
the distribution of d (ref. (4.5)) for each reference process is expected to be
skewed to the right with a mode near to the analytical model estimation. If
now a symmetric cut-off is applied for the lower and the upper end, as in
the first approach, most of the outliers identified are more expensive than the
analytical model. To overcome this problem, this variant estimates the dis-
tribution of the relative deviation from the analytical model and removes a
certain percentages of data points from both ends of this distribution. By this
method, full control over the percentage of removed data points at each tail
is ensured. This percentage can be adjusted based on knowledge about the
location of the outliers. After this procedure, the remaining data can be fed
to the ML algorithms.

4.1.2. Data Envelopment Analysis Efficiency

Using the DEA as an outlier removal method for cost estimation is inspired
by the idea that a good cost estimate should be realistic but also as low as
possible. Defersha, Salam and Bhuiyan [22] showed that a DEA approach
can be used effectively to predict the product cost from historical data. The
approach proposed in this section builds on these findings and develops an
outlier removal method based on cost efficiency to achieve a realistic and cost-
efficient estimate.

As described in Section 2.4 the DEA maximizes the efficiency or the ratio
between weighted output and input parameters for each part under some con-
straints. This concept can be applied to the cost estimation problem by repres-
enting the input as the historical cost of the product ci and the outputs as the
cost drivers/features of this part. These features xi can be the yearly produc-
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tion volume, the weight, the geometrical complexity, etc. The cost efficiency
for part i can then be expressed as

θ
(i)
cost =

uTi xi
vici

(4.6)

or

θ
(i)
cost =

uTi xi − u0

vici
, (4.7)

regarding whether a constant return to scale can be assumed (4.6) or not
(4.7). uTi is the weight vector for the cost drivers and vi the weight of the
cost. Both are optimized for each part within certain constraints to maximize
θ

(i)
cost (ref. Section 2.4). The former equation is called CCR model and implies
that the efficiency θ

(i)
cost is not affected by the scaling of input and output.

This would presume a part with ten-times the cost drivers would also cost
ten-times more. For cases where this assumption cannot be made, the BCC
model (4.7) introduces a correcting term u0. For produced parts, non-linear
relationships between cost drivers and cost are prevalent (e.g. the usual non-
linear relationship between manufacturing cost and the weight of the product).
For these cases the BCC model is probably the better choice, but this has to
be decided case by case.

Performing a DEA on historical data assigns each part a value which describes
how efficient the cost is reflected in the features of this part. Based on this, the
data can be cleaned from parts with low cost efficiency. Since the efficiency
is bounded between zero and one, the inefficient parts can be easily removed
by defining a minimum cost efficiency. Any part with a value lower than this
threshold will be removed.

This approach can be varied to also remove overly efficient parts. By this,
the focus on efficiency is lessened and more weight is given to the distribution
of the historical data and the fact that some parts might be cheaper than a
realistic market price is acknowledged. For this idea, two thresholds for the cost
efficiency, a lower and an upper one, are needed and only the data in between
is used for the cost estimation. A systematic way to determine the cut-off
points is to estimate the distribution of the cost efficiency in the data set and
then remove a certain percentage of the data at both tails of the distribution.
Depending on how much focus should be laid on the cost efficiency or on the
historical data, the percentage of data removed on the upper and lower end of
the distribution can be adjusted.
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4. Hybrid Cost Estimation

4.1.3. Combination of Data Envelopment Analysis and
Analytical Cost Model

The last approach investigated in this thesis is a combination of the two meth-
ods presented above. The analytical cost model focuses on a realistic de-
scription of the cost for a product, whereas the DEA emphasizes on the most
efficient parts in the historical data. Combining these two methods should
lead to a cost estimation which reflects both aspects. In order to find a reas-
onable combination of both approaches, it has to be investigated which data
points should be removed. Some parts could be identified as an outlier by their
low cost efficiency but not based on their deviation from the analytical cost
model. This is possible because the DEA does not take limitations of different
manufacturing processes into account and compares all part with each other.
Some reference processes can be less cost efficient than others and therefore
lead to a worse DEA efficiency. The opposite scenario can also occur. Parts
can be decently efficient but vary substantially from their theoretical cost, e.g.
because the reference processes identified do not cover all possible manufactur-
ing scenarios and hence, the analytical cost is not an accurate representation.
But in both cases the data point should not be removed from the data set,
since it still fulfills one of the two objectives. Following this argumentation,
parts get only removed when they are flagged as outliers by the DEA and the
analytical cost model.

Given the two variants for the analytical and the DEA approach, two variants
for their combination are proposed. The first one removes any data from the
historical data set that has a greater absolute deviation from the best fitting
theoretical cost calculation than a certain threshold and additionally has a
lower efficiency than the defined cut-off. This method reflects the combination
of the first variants of the individual methods.

Consequently, the second variant of the combined approach is based on the
second variants of the analytical and DEA approach. By this method, a data
point is removed when its deviation from the best fitting analytical cost model
is outside of the accepted percentile range for the estimated distribution for
this deviation and its cost efficiency is also not in the desired percentile range.
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4.2. Machine Learning Model

4.2. Machine Learning Model

After the removal of the outliers from the data, the remaining parts should
mostly reflect the relationships between the features of the products and their
final cost without many influences of other non-product-related parameters.
This data can now be used to build a model for the cost prediction. In the
proposed approach, this is performed by a ML model. This has the advantage
that no — or only limited — further knowledge about the cost relationships
is needed. ML models do need substantially less assumptions and prior know-
ledge than e.g. specialised parametric models, which makes them more flexible.
With cleaned data this should also result in an more accurate representation
of the actual cost relationships.

To estimate the cost, the ML algorithm learns a function between the inputs
(the features of each part) and the output (the cost). Once this function is
found, it can be used to predict the output for any other input. Commonly
used algorithms for such tasks are SVRs, ensembles of Decision Trees (forests)
and MLPs. How each of these methods work in detail is explained in Chapter 2.

The learned ML model contains the functional relationship between the input
features and the output of the historical data, which can be used for the cost
estimation of future parts. This also means that only the features for the
part in question are needed to perform the cost estimation and no additional
knowledge. This simplicity in the application of the cost model is a major
advantage of the proposed approach.
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For an assessment of the performance of the proposed approach and the dif-
ferent outlier removal methods, a case study on a real-world data set was
performed. This chapter gives an overview of the structure of this data, de-
scribes the concrete implementations of the proposed concepts and compares
their results.

5.1. Data for Case Study

The data used in the case study is a real-world data set of 209 deep-drawn
sheet-metal shells collected over a time frame of three years. Due to the confid-
entiality of the used data, it cannot be shared publicly, but the structure of the
data can be seen in Table 5.1. For each part, the four cost drivers net weight
mnet, complexity of the geometry, material and yearly production volume are
given. Additionally, the price payed for each of them is known, which reflects
their cost ctotal. The complexity parameter describes the complexity of the
geometry of the part in a numerical way. One stands for simple shapes and
two for more complicated ones, for which even multiple stages of deep-drawing
are possibly needed. The material grade parameter lists the steel grade with
the European steel number specified within EN 10027-2.

Index Net Weight Complexity Material Grade Yearly Volume Price

1 2.55 2 1.4509 25000 182
2 0.95 2 1.4513 185000 53
3 1.26 1 1.4301 200000 65
4 0.67 2 1.4828 450000 19
5 4.06 1 1.4510 8400 256

Table 5.1.: Exemplary data entries
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All of these four cost drivers are known to influence the cost of a part. The net
weight is the most influential parameter because it determines to a high degree
the material cost cm (4.2). This can be seen in Table 5.1 as the ordering of the
parts for net weight and for price are the same despite the varying other cost
drivers. Furthermore, the complexity plays a role on how much gross material
mgross is used. For simple parts, the waste produced by stamping the part in
form is lower than for complex parts. Also, the process scrap rs is higher for
parts with a higher complexity. This explains why Part 3 has only a marginally
higher price than Part 2 despite the considerable weight increase. The third
parameter influencing the material cost of a part is the material grade which
defines different prices per weight pm for the different steel grades. The last
parameter, the yearly volume, impacts the process cost per part cp (4.3) —
higher volumes lead to lower process cost per part, which can be seen at the
extraordinary low cost of Part 4.

In addition to the historical data, cost breakdowns for 16 parts from differ-
ent suppliers were used to extract information and build the analytical cost
model. These detailed breakdowns contain a split of the cost according to the
parameters in (4.1) to (4.3) and were estimated by product cost experts.

5.2. Implementation of Outlier Removal
Methods

This section covers the implementation details of the filtering mechanisms
proposed in Section 4.1. The first step for the two analytical variants was the
simplification of the existing analytical model, since it needs additional inputs
that are unknown for the historical data set. This simplification was performed
in collaboration with experts for cost estimation and manufacturing processes
which led to the identification of three different manufacturing scenarios: two
automated processes (A1 and A2), which only vary in the size and force of
the hydraulic press used, and one manual process (M1). For each of these
scenarios, the profit rprofit, SGA rSGA, scrap rs and material yield rates were
identified by analysis of the 16 detailed cost breakdowns and discussions with
the experts. In the same way, the packaging cost cpkg and handling rate rh were
estimated. Finally, some rules were set up to capture the physical and economic
boundaries of the three processes. The manual process is only reasonable for
lower yearly volumes, due to the high amount of manual labour. This is
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the reason an upper limit for the volume was introduced up to which M1 is
considered a viable scenario. The second rule implemented distinguishes the
scenarios A1 and A2. Since they only differ in the pressing force, the relevant
parameters are the net weight of the part and its complexity. The heavier
and more complex the geometry of a part, the more force is needed for deep-
drawing. To include this dependency in the analytical model, a threshold for
the product of net weight and complexity of a part is used to decide whether
the smaller press in A1 or the more powerful one in A2 is used. After this
process, a simplified analytical cost model was obtained, which only requires
the four input parameters available for the historical data.

The implementation of the outlier removal methods based on this analytical
model is straightforward. For the first analytical variant, as shown in Fig-
ure 4.2a, the theoretical costs for all manufacturing processes fulfilling the rules
are determined for each of the 209 historical parts. Then, for each product,
the process with the least absolute deviation from its real price is identified as
its most probable manufacturing scenario. After that, the relative deviation
of the two prices is calculated according to (4.5). If the absolute value of this
deviation d exceeds a set threshold, this product will be removed from the data
set.

The second analytical variant is following the same steps as the first one up
to the calculation of d (see Figure 4.2b). Then, the parts are grouped based
on their most probable scenario into three subsets and for each of them the
distribution of d is estimated. The estimation can be done by using the EDF
or by fitting a distribution to the data. For this approach, the latter was
chosen as this yields the advantage of generalizing and smoothing of the data,
which is especially useful for smaller subsets. The fitting was implemented
with the Python-package scipy.stats [71], which uses a maximum likelihood
estimation for the parameters of a distribution. To find a good fit, seven
different types of distributions were fitted to each scenario and then tested
with a two-sided KS test. To obtain the KS statistics, the implementation
of the scipy.stats package was used. Since the KS statistic does not follow
the Kolmogorov distribution for distributions fitted to the data, it cannot be
used to calculate the p-values and therefore the goodness of fit. Instead, the
p-values were estimated by simulation according to the procedure explained in
Section 2.5. 2500 new data samples were drawn from the fitted distribution of
d and for each, the distribution parameters where estimated again. For all of
the obtained 2500 distributions, the KS statistic is calculated and compared
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Distribution A1 A2 M1

Burr (Type III) 0.34 0.40 0.30
Alpha 0.16 0.06 0.15
Beta 0.16 0.03 0.13
Rayleigh 0.00 0.00 0.00
Log-Normal 0.06 0.01 0.01
Inverse Gaussian 0.04 0.00 0.00
Gaussian 0.00 0.00 0.00

Table 5.2.: p-values of Kolmogorov-Smirnov tests for distributions fitted to the
relative deviation d for each manufacturing scenario

Figure 5.1.: EDF and CDFs of fitted distributions for scenario A1

to the one from the original distribution. The estimated p-value is then the
fraction of times the statistic of the new distribution is larger than the one
from the original distribution (see Algorithm 2). Based on the rule of thumb
used by Clauset, Shalizi and Newman [16], a generation of 2500 data sets will
result in a p-value accurate to two decimal digits.

Table 5.2 shows the p-values of the used distributions for the three different
scenarios. Since the null hypothesis of the test assumes that the data is drawn
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Figure 5.2.: Actual (gray) vs. expected frequencies from fitted distributions for
scenario A1

from the tested distribution, weaker evidence against the null hypothesis is
preferred. Therefore, higher p-values represent a "better" fit. If a conservative
choice of p ≤ 0.1 to rule out the null hypothesis is applied, the Burr distribution
cannot be rejected for any reference process. For A1 and M1 d could also
follow an alpha or beta distribution, whereas for A2 only the Burr distribution
remains. To illustrate the goodness of fit, Figure 5.1 depicts the EDF and
the CDFs of the three distributions and Figure 5.2 shows the histogram of
the actual data compared to the expected frequencies. The same plots for
the other scenarios can be found in Appendix B Figure B.1 to B.4. It can be
seen that the difference between the Burr and alpha distribution is marginal
compared to the difference in the p-values. Nevertheless, the Burr distribution
seems to fit the data slightly better according to the plots. Because of this and
the fact that it is not rejected for all three reference processes based on the
p-values, it was chosen to model the distribution of d for all of these. Any part
on the edges of these distributions were considered outliers. To remove them,
a percentile range that contains all the non-outliers was defined. It was set up
in a way that the same percentage of data was removed from the upper and
the lower ends of the distributions, e.g. from the fifth to the 95th percentile.
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Material Grade Numerical Encoding

1.4512 0
1.4510 1
1.4301 2
1.4509 3
1.4513 4
1.4828 5

Table 5.3.: Conversion of material grade into numerical values

Because there was no knowledge about the amount of true outliers on the
upper and lower end, this symmetric percentile range was used. If there was
more knowledge about the location of the outliers, this could be implemented
in an asymmetric percentile range.

For the DEA variants, the BBC model as described in (2.26) was implemented
with the linear programming library PuLP [51]. To apply the DEA on the
data from this case study, it had to be transformed into numerical data first.
Three of the four features and the target variable were already numerical —
only the material grade needed to be converted. As it was an ordinal variable,
the material grades were converted to ascending numbers, as seen in Table 5.3,
starting with the cheapest material. After this transformation, the DEA was
performed. In the first variant, the so calculated efficiencies for each of the
209 parts of the historical data set were then used directly to remove any data
sample with a efficiency lower than a certain threshold.

The second DEA variant removes outliers at the lower and upper end of the
efficiency distribution. As shown in Figure 5.3, this distribution does not follow
a common distribution for this case study and hence, the percentile approach
described above was used with the EDF. Again, a symmetrical percentile range
was defined and any part with a efficiency outside of this range was removed
as an outlier.

Both combination approaches were implemented in putting the already de-
scribed methods together. The first variant uses the implementations of the
first variants of the analytical and DEA approaches to identify outliers. Data
points are only removed for the training data when both approaches flag them
as outliers. This means, any part with an absolute d-value higher then the set
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Figure 5.3.: Histogram of cost efficiencies

threshold and a cost efficiency lower than the acceptable one are not part of
the training data set.

Similarly, the second variant combines the other two variants of the approaches
— again only removing parts that are identified as outliers by both. This res-
ults in any part whose deviation from the analytical model and cost efficiency
are not in the accepted percentile ranges of the estimated distributions being
deleted.

5.3. Building of Machine Learning Models

In the final step the filtered data was used to train ML models. To ensure that
the differences between the outlier removal methods are not just a product of
the combination with a particular model, four different models were used to
evaluate the approaches: two SVRs, one with a linear kernel and the other
with a RBF kernel, an AdaBoost Forest and a MLP. The linear SVR is the
simplest model, which can only represent linear relationships. The other three
models have a higher expressive power and can fit more complex functions to
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the data. Moreover, this selection covers deterministic (SVR) and stochastic
models (AdaBoost Forest and MLP).

Before the historical data could be used for any ML model, it had to be pre-
processed. First the material grade had to be converted to a numerical scale.
Therefore, the same method mentioned earlier and shown in Table 5.3 was
used. After that, each input feature and the output were standardised by
subtracting the mean and dividing by the standard deviation. This results in
similar scales for all features and is necessary as SVRs are not scale invariant
and MLPs tend to converge faster with standardised data.

For the implementation of the SVRs, the SVR class of the scikit-learn [56]
library was used — once with a linear and once with the RBF kernel — which
describes the ε-SVR covered in Section 2.1. The AdaBoost Forest was built
with the AdaBoostRegressor class which used a DecisionTreeRegressor as base
estimator. The MLP, on the other hand, was implemented with the Sequential
model from the Keras [14] library integrated in TensorFlow [1] with two fully
connected hidden layers. To incorporate the Dropout, additionally after each
hidden layer a Dropout layer was added.

To find a good set of hyperparameters, for all four models a grid search with
different parameter settings was performed on the unfiltered data set. Since a
single split of the data into training and test data introduces randomness in this
process, each setting was tested with a ten-fold cross validation. This means,
the data was split in ten subsets and nine of them are used for the training of
the model. The left-over subset is then used to evaluate the performance. The
procedure is then repeated until all subsets were used for testing. After that,
the MSE for all test sets was averaged and the standard deviation was calcu-
lated to identify the best parameter setting. This was considered a reasonable
compromise between computation time and robustness of the results.

Table 5.4 presents the tested hyperparameters for each model. The number
of values tested for each parameter was limited to three to five to keep the
number of combinations in a reasonable range. The hyperparameters for the
linear SVR are the regularization parameters C and ε. For C five values
between 0.1 and 500 were tested, whereas for ε three values from 0.01 to 0.1
were identified. Here, the upper limit marks the maximum tolerated deviation
seen as acceptable for this application.

The RBF variant of the SVR has the additional kernel parameter γ. A com-
monly used rule of thumb for the γ-value is to take the inverse of the product
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Model Hyperparameter Values

Linear SVR C 0.1, 1, 10, 100, 500
ε 0.01, 0.05, 0.1

RBF-SVR C 0.1, 1, 10, 100, 500
ε 0.01, 0.05, 0.1
γ 0.025, 0.25, 2.5

AdaBoost Forest Min Samples 1, 2, 4, 5
Number of Estimators 5, 10, 50, 100
Learning Rate α 0.1, 0.3, 0.5, 0.8

MLP Neurons per Layer 5, 8, 10, 12
Dropout Rate 0.1, 0.2, 0.3
Batch Size 10, 25, 50
Number of Epochs 1000, 2000, 3000, 4000

Table 5.4.: Hyperparameter values tested with grid search

of the number of features times the variance of the flattened feature matrix.
Since the variances of all features equal one due to the standardisation, this
can be simplified to 1/Nfeatures. As alternatives 10/Nfeatures and 1/(10·Nfeatures) were
chosen to expand the search space to values that are an order of magnitude
higher and lower. For both SVRs, minimization was stopped when the result
did not improve for at least 0.001 for two consecutive iterations.

The hyperparameters tuned for the AdaBoost Forest were the stopping cri-
terion for the individual Decision Trees, the number of estimators and the
learning rate α used for boosting. The training of the trees was stopped as
soon as any further split would have led to a leaf node having less samples
than a minimum number. This is an efficient and easy-to-tune method to
avoid overfitting of Decision Trees. First trials showed a good performance
with a minimum number of two to four samples in the leaf nodes and around
50 trees, which was expanded to lower and higher values in the grid search. To
measure the quality of a split the MSE was used as described in Section 2.2.
Additionally, for the boosting the linear loss was chosen.

One major hyperparameter for the MLP is the amount of neurons in each
hidden layer. Here, small values between five and twelve were investigated to
avoid potential overfitting. For the same reason, the rate of the Dropout per-
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Model Best Hyperparameter Setting

Linear SVR C = 100; ε = 0.1

RBF-SVR C = 10; ε = 0.05; γ = 0.25

AdaBoost Forest Min Samples = 2; Number of Estimators = 100;

α = 0.5

MLP Neurons per Layer = 10; Dropout Rate = 0.1;

Batch Size = 10; Number of Epochs = 2000

Table 5.5.: Best hyperparameter settings for each model

formed after each hidden layer was included as an hyperparameter. Compared
to commonly used Dropout rates of around 0.5, for this application relatively
low values between 0.1 and 0.3 were tested because the small MLPs are already
limited in their overfitting capability. Besides, for the batch size and the epochs
(iterations) a set of common values were tested. The ELU function (see Ap-
pendix A Figure A.1) was chosen as the activation function for the neurons as
it leads to faster convergences and better generalization performance compared
to the commonly used ReLU [17]. For the training itself, the widespread Adam
optimizer [39] was used, which is a variant of the classical stochastic gradient
descent using variable learning rates for each weight.

The best hyperparameter settings for each model can be seen in Table 5.5.
The detailed results for the five best settings for each model can be found
in Appendix C Table C.1 – C.4. For the SVRs, the best settings were eas-
ily identifiable as the ones with the lowest average error also had the lowest
standard deviation. For the AdaBoost Forest and the MLP, on the other hand,
the hyperparameters with the second lowest average MSE were chosen, since
these settings are only marginally worse regarding the error but have a lower
standard deviation, which indicates better generalization performance.

After obtaining the best hyperparameter setting for each model, these were
implemented in the cost estimation approach. First, the historical data set
was filtered with one of the outlier removal methods. Then, the reduced data
was standardised and all four ML models were tested via a 50-fold cross val-
idation. 50 folds were chosen as a compromise between computation time for
the training of the models and statistically sound results. To avoid any leakage
of information from the training to the validation set, the standardisation was
performed after each split of the data into the two sets, instead of performing
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it on the whole data set in the beginning. This means, each validation set was
standardised with the mean and standard deviation from the corresponding
training set. In addition to the normal validation, for each iteration of the cross
validation, the fitted model was also tested on the whole data set including
the outliers removed before training.

5.4. Performance of Approaches

In order to compare the different outlier removal approaches, each method was
tested with different thresholds of the decision parameter. The accuracy of the
resulting four ML models for each method was used to investigate the beha-
viour of the approaches in relation to the amount of data classified as outliers.
As a measure of accuracy, the Root Mean Squared Error (RMSE) was used
since the models had been trained based on the MSE, which can be difficult
to interpret because of its quadratic nature. The RMSE negates this problem
while still stronger penalising larger errors in contrast to alternatives like the
Mean Absolute Error. The thresholds and percentages of outliers removed,
as shown in Table 5.6, are chosen such that each stage leads to a comparable
amount of outliers. For both combination variants, all combinations of the lis-
ted values were investigated. To achieve a similar amount of identified outliers
with them, the threshold values also had to be raised, since the outliers which
are found by both methods are only a subset of the outliers flagged by each
individual approach.

Outlier Removal Approach Threshold/Outlier Percentage

Analytical Variant 1 0.2, 0.3, 0.4, 0.6, 0.8, 2.0, ∞
Analytical Variant 2 50, 40, 30, 20, 10, 2, 0
DEA Variant 1 0.60, 0.55, 0.50, 0.40, 0.30, 0.20, 0.00
DEA Variant 2 50, 40, 30, 20, 10, 2, 0
Combination Variant 1 |d|: 0.15, 0.45, 0.85, ∞

θcost: 0.65, 0.55, 0.35, 0.00
Combination Variant 2 d: 70, 50, 30, 0

θcost: 70, 50, 30, 0

Table 5.6.: Thresholds and outlier percentages used for the evaluation of the
outlier removal approaches
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5.4.1. Evaluation via Cross Validation

To evaluate the performance, the results of the cross validation are discussed
first. Looking at Figure 5.4, the average RMSE of the 50 cross-validation
runs for the different thresholds can be seen. With each approach the models
perform according to their complexity: The best accuracy is achieved by the
AdaBoost Forest, followed by the MLP. The third place goes to the SVR
with RBF kernel and the linear SVR performs worst. Nonetheless, for the
analysis of the different outlier removal methods, the shape of the graphs is
more important than the concrete performance of a particular model. The
first analytical variant starts with a steep decline of the error moving from 209
training samples — representing the whole data set — to 201. The removal
of only eight parts leads to a decrease of the error of around 31 % averaged
over the four models. The decrease is quite similar between the linear SVR,
the MLP and the AdaBoost Forest; only the performance of the RBF-SVR
benefits less than the others. After that, the decline slows down and stops at
170 samples with an average reduction of 58 % compared to the unfiltered data
set. The behaviours of the four ML models share strong similarities, although
the overall RMSE differs. Going below 170 training samples seems to have no
effect on any of the models, except for some minor oscillations, which are most
likely caused by different cross-validation splits. The initial steep decrease
of the error, which slows down afterwards, indicates that the first outliers
identified deviate the most from the rest of the data. By declaring additional
data points as outliers, the deviation between the new outliers and the other
data shrinks, which leads to a slower decrease of the RMSE. Interestingly, the
error is not decreasing below 170 samples. Since the removal of more data
removes the variance further, it was expected to see at least a small decrease
of the prediction error.

Instead of looking at the average of the 50 cross-validation runs, they can also
be illustrated with boxplots, like in Figure 5.5. The whiskers in these boxplots
follow the 1.5-interquartile-range-rule and any data exceeding these limits is
not shown for the sake of clarity. Here, it can also be seen that the variance
between the runs reduces from 209 to 170 training samples. From there on,
any further removal of outliers does not change the boxplots considerably.
The reduction in variance for the cross-validation runs implies a simultaneous
reduction of the variance in the underlying data, explaining the initial decrease
of the RMSE.
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(a) Analytical Variant 1 (b) Analytical Variant 2

(c) DEA Variant 1 (d) DEA Variant 2

(e) Combination Variant 1 (f) Combination Variant 2

Figure 5.4.: Average RMSE from the cross validation in relation to the training
set size for each outlier removal approach
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(a) Analytical Variant 1 (b) Analytical Variant 2

(c) DEA Variant 1 (d) DEA Variant 2

(e) Combination Variant 1 (f) Combination Variant 2

Figure 5.5.: Boxplots of the cross validation RMSE in relation to the training
set size for each outlier removal approach
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The average error of the second analytical variant has an interesting behaviour
when the first outliers are filtered out. Removing five data points from the data
set increases the error by 2 % on average. This can indicate that not enough
major outliers were removed and the remaining ones are now even harder
to predict for the models. This assumption is supported by the following
steep decrease of the error, after the removal of additional outliers. At 187
samples the RMSE on average has reduced by 37 % compared to the unfiltered
data set. Again, the RBF-SVR shows the slowest decrease. After that, the
decrease slows down. The SVRs gradually improve their performance until
they end up at similar errors to the ones of the first analytical variant for
100 samples. The AdaBoost Forest and the MLP on the other hand, first
plateau for a while until they slowly decrease again. This could indicate that
at 187 samples a good model is found, which then only improves, if a certain
amount of additional data and with it variance is removed from the training set.
Interestingly, the AdaBoost Forest does not suffer from the initial increase of
the error and has the longest plateau from 187 to 144 samples. This behaviour
could indicate that this model is complex enough to accurately predict even
the outliers. Overall, the slower decrease compared to the first method can be
explained by the fact, that this approach is not focusing on removing the most
obvious outliers, but on maintaining the initial distribution of the deviation
from the analytical model. Since data points are removed on both ends of the
distribution, the ones on the lower end are less influential then the ones from
the upper tail. By this, more variance is left in the data as a trade-off. This
can also be seen in the boxplots. The whiskers and the interquartile-range
is shrinking slower than in the first variant, but continuously over the whole
range, except for the increase in the beginning.

Looking at the DEA approaches, the first variant has a similar behaviour as
the second analytical variant. Nevertheless, the decrease up to 187 samples
is greater with an average of 44 %. Again, the steepest slope is not at the
beginning but between 197 and 187 samples; except for the AdaBoost Forest,
whose decrease is constant from 209 to 187. After this, all models slowly
increase their performance up to 135 training samples. This improvement is
only marginal for the AdaBoost Forest as its error at 187 is already quite low.
Looking at the corresponding boxplots the decrease of variance can be seen
up to 135 data samples. Below that, almost no improvement is noticeable.
Compared to the analytical variants, less variance can be seen in the results.
The notable behaviour of the AdaBoost Forest can also be seen in the trend
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of the variance: A great decrease in the first step, followed by only marginal
improvement. When compared to the first analytical variant, this method has
similar — even slightly lower — variances around 185 and 200 samples but
worse average errors. This could be an indication that this approach indeed
reduces the variance but does not follow the underlying relationships in the
data set as well.

A more distinct behaviour is shown by the second DEA variant. Here, the ini-
tial steep decline of the average error is only present for the AdaBoost Forest.
This model reduces its RMSE by 31 % by removing only three parts. The
other three models decrease their error almost linearly up to 100 samples.
There is however a small dent noticeable around 167 training samples. A
remarkable difference to the other approaches so far is the decrease of the dif-
ference between the worst (linear SVR) and the best model (AdaBoost Forest).
The more training samples are removed, the closer the errors of all models get.
This could be due to a oversimplification of the problem by this approach. If
this method removed any part that is not following a linear relationship, the
non-linear models would not have any advantage in performance and a similar
convergence of the accuracies of the different models could be seen. A look
at the boxplots reinforces this assumption. This approach leads to the lowest
variances in the cross-validation runs, even for the linear SVR.

Investigating the results of the combination variants, the first variant looks
similar to the underlying approaches. A steep decent of an average of 37 %
can be seen for a removal of 11 outliers, which is similar to the first analytical
variant. The RBF-SVR shows once more the least initial improvement. The
following behaviours look like an average of both approaches. The models
slowly improve until they stagnate around 160 samples. The best accuracy
they reach is on par with the first analytical variant and worse than the first
DEA variant. The corresponding boxplots show that the variance in the data
is also in between the two individual approaches.

The second combination variant also combines characteristics from both com-
ponents. A decrease of the RMSE of 45 % can be seen up to 183 samples.
After that the decrease slows down and ends up at similar levels as the second
analytical variant. The convergence of the models observed in the second
DEA variant, is not present, although the decrease of the error is faster as
with analytical method. A comparison of the boxplots confirms these results.
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∞

(a) Linear SVR

∞

(b) RBF-SVR

∞

(c) MLP

∞

(d) AdaBoost Forest

Figure 5.6.: Average RMSE from the cross validation in relation to the
thresholds for cost efficiency and deviation from the analytical
model for the first combination variant

The initial drop of the variance is similar to the DEA variant, whereas the
behaviour at lower samples resembles the one of the analytical method.

The small peaks in the plots of the combination variants can be explained
by how the plots were generated. Since these approaches have two different
threshold parameters, they span a three-dimensional space with the RMSE,
which is then transformed into a two-dimensional one by plotting the resulting
training samples. Therefore, adjacent points on the 2D-plot are not neces-
sarily adjacent in the three-dimensional space and can be from regions where
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(a) Linear SVR (b) RBF-SVR

(c) MLP (d) AdaBoost Forest

Figure 5.7.: Average RMSE from the cross validation in relation to the
thresholds for cost efficiency and deviation from the analytical
model for the second combination variant

different approaches dominate the behaviour of the combination approach.
Additionally, when multiple threshold combinations led to the same amount
of training samples, only the combination with the lower average error was
plotted. Looking at the 3-D plots of the first variant (Figure 5.6), it can be
seen that the lines on the surface parallel to the axis for the cost efficiency θcost
decrease slowly compared to the lines parallel to the |d|-axis. The latter show a
steep decrease of the RMSE between the whole data set and a threshold for |d|
of 0.8. With lower thresholds for the cost efficiency this decline is weakened.
For thresholds lower than 0.8 for |d|, the error is only decreasing slowly for
all models. Looking at the cost efficiency lines, they are almost not affected
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by the threshold for |d|, except for the range between 0.8 and ∞. All in all
no synergies between the two methods can be seen. It rather seems that they
hinder each other.

For the second combination variant both thresholds have a similar effect, as
seen in Figure 5.7. The lines parallel to the d-axis and the ones parallel to the
θcost-axis both show changes when the other threshold is changed. The general
trend of a decrease of the slope is existent for every line, but the intensity of
the improvement of the RMSE changes. But similar to the first combination
variant, no synergy effects can be seen.

5.4.2. Evaluation on Whole Data Set

To verify the drawn conclusions from the cross validation, a different look
at the approaches might be helpful. The second performance metric used is
the RMSE of the trained models applied to the whole data set. This means,
the test set contains the outliers that were removed for training in addition
to the regular training data. Figure 5.8 shows the average error of the 50
models trained via cross validation for the whole data set. Investigating the
first analytical variant, it shows that all models except the linear SVR try to
model the outliers when trained on the whole data set. The AdaBoost Forest
has a surprisingly low error which indicates that this model is most prone to
overfitting. The MLP and RBF-SVR also tend to model the outliers but to a
smaller extent. The linear SVR, on the other hand, has a hard time with these
data points. Since it can only model linear relationships, it cannot deal with
outliers that are probably highly non-linear. As this behaviour is seen in all
of the tested approaches, the linear SVR will not be further mentioned in the
upcoming analysis. With the removal of more data points, the other models
also focus predominantly on the actual underlying relationship, which results
in a worse error, since the outliers are predicted worse. For this approach,
a fast increase which stops at 184 samples can be seen for all models. The
AdaBoost Forest has the highest increase followed by the MLP and RBF-
SVR. The last one shows an interesting behaviour as the removal of the first
eight outliers increases the error only marginally. Only the removal of 17 more
data points brings the error up to its maximum score. A similar behaviour
can be seen for the MLP, although not as pronounced. The first few outliers
still increase the RMSE, just with a lesser slope. This behaviour indicates that
both models are not complex enough to represent all outliers in the data set.
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(a) Analytical Variant 1 (b) Analytical Variant 2

(c) DEA Variant 1 (d) DEA Variant 2

(e) Combination Variant 1 (f) Combination Variant 2

Figure 5.8.: Average RMSE on the whole data set in relation to the training
set size for each outlier removal approach
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Therefore, the removal of some outliers only results in a slight change of the
model. Overall this confirms the observations of the aforementioned evaluation
of the cross-validation results.

Looking at the second analytical variant, the most obvious difference is a slower
and more gradual increase of the error. Depending on the model this increase
stagnates between 170 and 118 training samples. The slow increase for the
removal of the first outliers can be seen for all three relevant models. After
this, the AdaBoost Forest behaves similar to the first variant, despite a slower
increase of the error in general. This results in a late stagnation of the error at
118 samples. The error of the MLP, on the other hand, increases linearly until
the maximum is reached at 144 samples. For the RBF-SVR, the initial slow
increase is extended up to 187 samples. With the removal of 17 more outliers
it already reaches its maximum error. These behaviours show again, that this
method is less efficient than the first analytical variant in removing the major
outliers.

For the first DEA variant, the slow initial increase can be seen again for the
MLP and the RBF-SVR. Only the AdaBoost Forest shows a steep rise of the
RMSE up to 187 samples, where it then plateaus until 173 samples are reached.
With the removal of more data points, the error is then increased again until
the maximum is reached at 135 training samples. The MLP shows a similar
behaviour. Even the error of the RBF-SVR slows down it rise at 187 samples.
The plateaus and the slower increase of the error suggests that this approach
removes many data points that have no influence on the models. Consequently,
it does not fully capture the underlying relationships in the data. The same
assumption was already made in the first analysis and seems now even more
plausible.

The plot of the second DEA variant shows a similar picture. The errors of the
MLP and RBF-SVR rise slowly up to 167 training samples. The increase for
the AdaBoost Forest is again much steeper. The RBF-SVR and the AdaBoost
Forest plateau from 167 to 125 samples, after which they jump to their final
RMSEs. The plateau of the MLP is a bit shorter, such that it is reaching
its maximum error at 125 samples. This approach seems to fail at reliably
removing the outliers even more than the first DEA variant. Together with
the results of the first evaluation it seems to be the worst approach so far.

The plots of the combination variants do not reveal much new information.
Both variants show again characteristics of both individual methods. For the
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∞

(a) Linear SVR

∞

(b) RBF-SVR

∞

(c) MLP

∞

(d) AdaBoost Forest

Figure 5.9.: Average RMSE on the whole data set in relation to the thresholds
for cost efficiency and deviation from the analytical model for the
first combination variant

first variant all relevant models have a similar initial rise as in the analyt-
ical approach, which is followed by a plateau reminiscent of the first DEA
variant. After this plateau all errors rise strongly again and already start to
stagnate at 187 samples. Further analysis of this plot is difficult because of the
transformation of the three-dimensional results into a 2-D plot. The 3-D plots
in Figure 5.9 show the RMSE of the first combination variant. The surface
plots show that for all models except for the linear SVR, the performance is
limited by the threshold for the cost efficiency θcost. Since the analytical vari-
ant already identified all relevant outliers with a threshold off 0.8, any lower
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(a) Linear SVR (b) RBF-SVR

(c) MLP (d) AdaBoost Forest

Figure 5.10.: Average RMSE on the whole data set in relation to the thresholds
for cost efficiency and deviation from the analytical model for the
second combination variant

value does not change the performance of the models. The RMSE is then only
dependent on how many of these outliers are also found by the DEA.

The plot for the second combination variant in Figure 5.8 shows a rise of the
error after the removal of the first outliers similar to the second analytical
variant up to 169 samples. After that the RMSE drops and plateaus until 159
training samples, where it is jumping up again, followed by stagnation. This
sudden drop is definitely caused by the transformation of the data. Looking
at the 3-D plots in Figure 5.10, a similar behaviour as in the first combination
variant can be seen. The analytical variant reaches the maximum error way
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faster than the DEA approach and is therefore limited when smaller percent-
ages of the data are removed based on their cost efficiency.

The boxplots for the evaluation of the performance on the whole data set do not
deliver any new insights, since the differences between the 50 cross-validation
runs is marginal (ref. Appendix D Figure D.1).

5.4.3. Summary

Overall, it can be concluded that the analytical variants perform best in these
evaluations. Both seem to capture the relationships in the data satisfactorily.
Which variant is better for the hybrid cost estimation approach, depends on
the goal and incentives for the concrete application. The first variant removes
outliers more quickly and is therefore suited for scenarios where the fast re-
moval of the major outliers has priority. The second variant is focusing on
maintaining the distribution of the historical data, resulting in a slower im-
provement. But this variant could be beneficial in data sets in which there is no
clear line between outliers and inliers, as it gives precise control about the data
points it removes. For the outlier removal methods based on the DEA, it has
been shown that only the first variant delivers a reasonably good behaviour. It
does not reflect the underlying relationship as well as the analytical variants,
but for cases where cost efficiency is the main focus, it can be still a valid
option. The second DEA variant is neither following the cost relationships nor
focuses on efficiency, because the most efficient parts are also removed. These
reasons make this approach inferior to the already mentioned ones. Similarly,
the combination approaches do not add any benefit to the individual methods.
Instead, the combination tends to hinder both methods from removing outliers
efficiently and the fact that two thresholds have to be adjusted increases the
complexity unnecessarily. Hence, the combination approaches are not recom-
mended to be used in the hybrid cost estimation approach. A short overview
of these results is presented in Table 5.7.

The hybrid cost estimation approach as a whole shows promising results. It
is a huge improvement over a ML model without any outlier removal with
a decrease of the RMSE up to 58 %. The removal methods based on the
analytical cost model seem to work best for a realistic cost estimate, but this
approach has the flexibility to even shift the priority to the cost efficiency with
the DEA-based method. Its major strengths are the simplicity in application,

58



5.4. Performance of Approaches

Outlier Removal Method Recommendation Reason

Analytical Variant 1 Yes Fast removal of major
outliers

Analytical Variant 2 Yes Focus on distribution of
historical data

DEA Variant 1 Conditional Focus on cost efficiency
DEA Variant 2 No Oversimplification of the

cost relationship
Combination Variant 1 No No benefits over individual

approaches
Combination Variant 2 No No benefits over individual

approaches

Table 5.7.: Recommendations for the outlier removal methods to be used in
the hybrid cost estimation approach

which is the same of a stand-alone ML model, and the little information needed
for an accurate cost estimation of a product.
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6. Conclusion & Future Work

Realistic product cost estimation is a crucial element to maintain and extend
competitiveness in globalised markets. Due to this importance, a variety of
different techniques and approaches had been proposed in literature, which all
have their own strengths and weaknesses and are applicable at different times
during the development phase. Methods for early phases in the product design
process, like intuitive or analogical techniques, require the least information
about the final product, but deliver on the other hand only a rough estimate
of the cost. Parametric and non-parametric approaches can predict the cost
more precisely, if more knowledge about the product is available. The most
accurate results can be achieved by a analytical cost analysis. Nevertheless,
this technique requires extensive knowledge about the final product design and
the manufacturing process, which makes this method only applicable in late
development stages.

In case that the product is manufactured by a supplier, additional hurdles
for an accurate cost estimation arise. This scenario introduces further un-
certainty, which complicates the estimation. One reason for this uncertainty
can be missing information about the manufacturing process, which affects
analytical approaches negatively. Another reason are numerous non-product
related influences on the negotiated price for the manufacturing of the product.
Supplier-specific circumstances, like the available machinery or the profit mar-
gin, or even the outcome of the negotiations itself add additional variability
to the historical data. This impacts parametric and non-parametric models,
which use this data.

To deal with these added difficulties, a new hybrid cost estimation approach
has been proposed, which combines different cost estimation techniques. The
presented method uses a simplified analytical cost model and/or the cost effi-
ciency to filter out unrealistic data points from the historical data set. After-
wards, the cleaned data is used to train a ML model for the cost prediction.
The analytical outlier detection methods substitute the missing information
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with knowledge obtained from examples with full costing details, whereas the
DEA approaches focus on the cost efficiency of the products.

The presented hybrid approach showed a superior performance compared to
a traditional ML approach as all proposed outlier removal techniques notably
improved the accuracy of the cost estimation obtained from the ML model
for the performed case study. However, the techniques showed different be-
haviours. The analytical outlier removal methods captured the underlying
relationship in the data best. The first analytical approach proposed is most
suited for situations where the outliers are clearly distinguishable from the rest
of the data set. The second analytical variant is oriented at the distribution of
the original data and can therefore be used for applications where a clear dis-
tinction between out- and inliers is difficult. The investigated outlier removal
techniques based on a DEA struggled to identify meaningful outliers. Nonethe-
less, the first of the two presented DEA approaches can still be beneficial when
cost efficiency is the main focus of the cost prediction. The second variant,
on the other hand, did not deliver satisfactory results as the efficiency focus is
lost in addition to the poor modeling of the cost drivers. The combination of
analytical and DEA methods showed no additional benefit over the individual
approaches. In contrary, the distinct focuses of the analytical model and the
DEA seem to hinder each other when combined. Overall, the proposed cost
estimation method showed promising results with the right outlier removal
methods and is therefore an improvement over classical techniques, especially
in cases with limited information on the product. It is a fast and easy-to-use
method, which can be applied without extensive knowledge of the product or
its cost structure, which makes it a perfect approach for the comparison of
different product variants in early design stages.

Nevertheless, more research is needed to discover the full potential of this
approach. Next to additional case studies for validation of the results, a deeper
analysis of the behaviour of the different outlier removal methods is suggested.
This could be done by applying the hybrid cost estimation method on a data set
with labeled outliers to see which outlier detection is more reliable. Similarly,
it would be interesting to further analyse the differences and common grounds
of outliers identified by the combination of analytical and DEA methods and
data points only removed by one of the methods.
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A. Multilayer Perceptron

Figure A.1.: Common activation functions in MLPs
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B. Fitted Distributions

Figure B.1.: EDF and CDFs of fitted distributions for scenario A2
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B. Fitted Distributions

Figure B.2.: Actual (gray) vs. expected frequencies from fitted distributions
for scenario A2

Figure B.3.: EDF and CDFs of fitted distributions for scenario M1
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Figure B.4.: Actual (gray) vs. expected frequencies from fitted distributions
for scenario M1
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B. Fitted Distributions

D
istribution

Standardised
P
robability

D
ensity

Function
D
om

ain

B
urr

(T
ype

III)
f

(x
,a
,b)

=
a
bx
−
a−

1

(1
+
x
−
a)
b+

1
x
≥

0;
a
,b
>

0

A
lpha

f
(x
,a

)
=

1

x
2Φ

(a
) √

2π
ex

p (
−

12 (
a
−

1

x )
2 )

x
,a
>

0

B
eta

f
(x
,a
,b)

=
Γ

(a
+
b)

Γ
(a

)
+

Γ
(b) x

a−
1

(1
−
x

)
b−

1
0
≤
x
≤

1;
a
,b
>

0

R
ayleigh

f
(x

)
=
x

ex
p (−

x
2/2 )

x
≥

0

Log-N
orm

al
f

(x
,a

)
=

1

a
x √

2π
ex

p (
−

log
2(x

)

2s
2 )

x
,s
>

0

Inverse
G
aussian

f
(x
,µ

)
=

1

1 √
2π
x

3
ex

p (
−

(x
−
µ

)
2

2x
µ

2 )
x
≥

0;
µ
>

0

G
aussian

f
(x

)
=

ex
p

(−
x

2/2)
√

2π
x
∈
R

w
here

Φ
(z)

is
the

G
aussian

C
D
F
and

Γ
(z)

is
the

gam
m
a
function

Table
B
.1.:P

robability
density

functions
used

to
describe

the
relative

deviation
d

70



C. Best Hyperparameter
Settings

C ε Avg. MSE Std. Deviation MSE

100 0.10 0.53163 0.69001
10 0.10 0.53164 0.69003
500 0.10 0.53177 0.69023
1 0.10 0.53186 0.68990

500 0.05 0.53329 0.69945

Table C.1.: Best hyperparameter settings for the linear SVR

C ε γ Avg. MSE Std. Deviation MSE

10 0.05 0.25 0.33535 0.38772
10 0.10 0.25 0.33987 0.39201
10 0.01 0.25 0.34387 0.40425
100 0.10 0.25 0.38925 0.43652
1 0.10 2.50 0.42139 0.49604

Table C.2.: Best hyperparameter settings for the RBF-SVR
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C. Best Hyperparameter Settings

Neurons
per Layer

Dropout
Rate

Batch
Size

Epochs Avg.
MSE

Std. Devi-
ation MSE

5 0.2 25 3000 0.39595 0.48660
10 0.1 10 2000 0.39787 0.44720
8 0.2 50 3000 0.39887 0.46048
8 0.1 10 1000 0.39964 0.47397
5 0.2 50 4000 0.40098 0.45624

Table C.3.: Best hyperparameter settings for the MLP

Min Samples Estimators α Avg. MSE Std. Deviation MSE

1 50 0.5 0.31029 0.19684
2 100 0.5 0.31340 0.15183
2 100 0.3 0.32110 0.16141
2 10 0.5 0.32271 0.21309
4 10 0.8 0.32388 0.24082

Table C.4.: Best hyperparameter settings for the AdaBoost Forest
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D. Evaluation Plots
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D. Evaluation Plots

(a) Analytical Variant 1 (b) Analytical Variant 2

(c) DEA Variant 1 (d) DEA Variant 2

(e) Combination Variant 1 (f) Combination Variant 2

Figure D.1.: Boxplots of the RMSE on the whole data set in relation to the
training set size for each outlier removal approach
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