
Viviane Wolters

Promoting Cooperative Behavior
with Collective Decision-Making
in Highway-Based
Multi-Agent Pathfinding

Intelligent Cooperative Systems
Computational Intelligence

Promoting Cooperative Behavior
with Collective Decision-Making

in Highway-Based
Multi-Agent Pathfinding

Master Thesis

Viviane Wolters

November 6, 2021

Supervisor: Prof. Dr.-Ing. habil. Sanaz Mostaghim

Advisor: Sebastian Mai

Viviane Wolters: Promoting Cooperative Behavior
with Collective Decision-Making
in Highway-Based
Multi-Agent Pathfinding
Otto-von-Guericke Universität
Intelligent Cooperative Systems
Computational Intelligence
Magdeburg, 2021.

Abstract

Multi-Agent Pathfinding concerns finding paths for multiple agents, from their
starting points to their target destinations, in a manner that enables the agents
to move simultaneously without colliding with obstacles or other agents.
This thesis presents a new approach for multi-agent pathfinding on grid maps.
This approach utilizes an algorithm based on A*-search and prevents collisions
through a binding highway layout created by several collective decisions of the
agents. Specifically, the problem topology is considered as a graph with nodes
for each grid cell and undirected edges between adjacent cells. In each decision
round the agents vote for an edge to be added to the highway layout. They de-
termine their opinion about it using an A*-search, which is influenced to return
paths that contain edges of the emerging highway graph to some degree. Ad-
ditional rules ensure that the resulting layout will be designed in a way that no
collisions are possible when moving along the highways. At the end the decision
rounds result in a highway layout that is largely suitable for all agents. To guar-
antee that each agent arrives at its destination, agents are allowed to change the
highway layout during path execution if the other agents agree.

An analysis of the A*-based search on collectively created highways has shown
that the choice of parameters to affect the A*-search is a tradeoff between the
quality of the highway layout, the sum of cost or makespan, and the speed of the
algorithm. However, with a good parameter choice, the algorithm scales signifi-
cantly better than a constraint-based search. For large maps as well as maps with
a lot of free space, it also scales better than a simple priority-based planner. Nev-
ertheless, this approach shows minor weaknesses for warehouse-like domains.

I

Contents

List of Figures V

List of Tables VII

1 Introduction 1

2 Basic Principles and State of the Art 3
2.1 Multi-Agent Pathfinding . 3

2.1.1 Formal Description . 3

2.1.2 Objective Functions . 5

2.1.3 Overview of Multi-Agent Pathfinding Solvers 5

2.1.4 Highway-Using Approaches . 7

2.2 Collective Decision-Making . 8

2.2.1 Aggregation Methods . 8

2.2.2 Collective Decisions in Multi-Agent Systems 9

3 Methodology 13
3.1 Definitions . 13

3.2 The Algorithm: A*+CCHWY . 16

3.2.1 Path Planning . 16

3.2.2 Path Execution . 20

4 Experiments 25
4.1 Implementation . 25

4.2 Problem-Based Benchmark Suite . 27

4.3 Experimental Design . 29

4.3.1 Experiment 1: Parameter analysis 29

4.3.2 Experiment 2: The Algorithm Performance 30

III

Contents

4.4 Discussion of Results . 31

4.4.1 Experiment 1: Parameter Analysis 31

4.4.2 Experiment 2: The Algorithm Performance 39

5 Conclusion and Outlook 43

Bibliography 45

IV

List of Figures

2.1 Four Types of MAPF Conflicts . 4

3.1 Graph Structures . 14

3.2 Movement Restrictions . 15

3.3 Quality difference of varying highway layouts 17

3.4 Opinion Definition . 18

3.5 Side Effects of Adding Edges to the Highway Graph 21

3.6 Example of Deadlock Situation . 22

4.1 UML-Diagram of the Simulation Model 26

4.2 Results of Experiment 1.2 and 1.4: No. of Highway Changes 32

4.3 Results of Experiment 1.2 and 1.4: Sum of Cost, Makespan and No.

of Deadlocks . 34

4.4 Results of Experiment 1.1: Success-Rate 36

4.5 Results of Experiment 1.2: Success-Rate 37

4.6 Results of Experiment 1.2 and 1.3: No. of Decision-Rounds 37

4.7 Results of Experiment 2.1 and 2.2: Success Rate, Sum of Cost,

Makespan . 40

V

List of Tables

2.1 Overview of Popular MAPF Solvers . 6

4.1 Characteristics of maps used in the benchmark 28

4.2 Experimental design of Experiment 1: Parameter Analysis 42

4.3 Experimental design of Experiment 2: Algorithm Quality 42

VII

1 Introduction

Multi-agent pathfinding (MAPF) is a research topic assigned to the broad field of

artificial intelligence. It deals with planning paths for a group of agents that have

to move simultaneously from their starting to their target positions without col-

liding with existing obstacles or the other agents.

MAPF is relevant to any real-world application involving several moving agents,

such as warehouse management, airport towing, autonomous vehicles, robotics,

and video games. Due to its relevance in highly diverse areas, many scientific

works have been published, dealing with various aspects and approaches to solv-

ing such planning problems.

Many of these approaches concentrate on optimally solving MAPF problems by

minimizing objective functions such as the sum of cost. However, solving such

problems optimally has been shown to be NP-hard [49] and is therefore only suit-

able for a small number of agents. To make pathfinding feasible for a wider group

of agents, some approaches have thus renounced optimal solutions. For exam-

ple, Cohen et al. [9][10] use a highway layout and Jansen et al. [19] direction

maps as influencing schemes to manipulate the heuristic search while minimiz-

ing conflicts. Jansen et al. [18], in turn, use flow restrictions to reduce the search

space.

In one way or the other, all three approaches influence the heuristic search to

return paths orientating on a scheme of moving directions or following flow re-

strictions. This, in turn, leads to an implicit global behavior of the agents, which

reduces the conflicts to be solved and prevents collisions. Nonetheless, to cre-

ate an effective influencing scheme or suitable flow restrictions for a given en-

vironment, these approaches are dependent on humans expertise or a learning

algorithm running beforehand.

In this thesis a new concept will be analyzed, where such an influencing scheme

is a result of several collective decisions made by the agents during the path-

planning process and on the fly while navigating towards their destinations.

1

1 Introduction

This thesis aims to develop an algorithm capable of solving a MAPF problem on

a grid map so that the involved agents decide collectively about the possible di-

rection of motion for each grid cell for the purpose of collision avoidance. In

addition to its design and implementation, the algorithm has to be analyzed and

compared to other algorithms within different benchmark scenarios to answer

the following questions:

1. How does the algorithm’s parameter influence its performance?

2. How does the algorithm perform in comparison to other algorithms?

3. Where are the weaknesses and limits of the algorithm?

The remainder of this thesis is structured as follows: Chapter 2 presents state

of the art and is divided into two parts, MAPF and collective decision-making

(CDM). Each section provides formal definitions and an overview of existing ap-

proaches. Chapter 3 presents the used methodology and Chapter 4 the con-

ducted experiments, including a description of the simulation used for it, an ex-

planation of its design, and an analysis of the results. The last chapter answers

the four previously mentioned research questions and contains recommenda-

tions for further research.

2

2 Basic Principles and State of
the Art

The objective of the algorithm presented in this thesis is to solve a MAPF prob-

lem with the help of agents’ collectively designed movement restrictions called

highways. This chapter explains the theoretical foundation of the two key as-

pects MAPF and CDM. Furthermore, it provides an overview of their state of the

art and highlights the commonalities and differences of existing approaches in

comparison to the one presented here.

2.1 Multi-Agent Pathfinding

MAPF entails finding and planning paths between the specified start and target

positions of a group of agents. Specifically, all agents need to be able to exe-

cute their path simultaneously and reach their target without colliding with each

other or with static obstacles.

2.1.1 Formal Description

Stern et al. [38] formally describe a classical MAPF problem with k agents as a

tuple <G , s, t >, where

G = (V ,E) (2.1)

is an undirected graph, which vertices V are possible locations of the agents, and

which edges (n,n’) ∈ E represent the agents possibility of moving from vertex n

to n’ without passing through any other vertex.

The second parameter of the tuple,

s : [1, ...,k] →V , (2.2)

3

2 Basic Principles and State of the Art

Figure 2.1: Four types of MAPF conflicts. From left to right: vertex conflict, edge

conflict, following conflict, cycle conflict

is a function that maps an agent to its initial location.

The last parameter, on the other hand, that is,

t : [1, ...,k] →V , (2.3)

is a function that maps an agent to the location of its target destination.

The time in all classical MAPF problems is assumed to be discreet. At each time

step, an agent can perform one single action, which can be either moving from

the current to one of the adjacent locations or waiting at the current location.

Stern et al. [38] denotes a sequence of this actions π = (a1, ...an), leading one

agent i from its initial position s(i) to its target position t (i), as "single-agent

plan". Formally:

t (i) = an(...a2(a1(s(i)))...) (2.4)

Combining these "single-agent plans" from each of the k agents to a joint plan

without conflicts leads to a valid solution for the MAPF problem. Figure 2.1 dis-

plays the following four possible conflicts:

• Vertex conflict: Both agents plan to occupy the same vertex at the same

time.

• Edge conflict: Two agents plan to swap locations over the same edge at the

same time.

• Following conflict: An agent plans to occupy a location at time step t + 1

that was occupied by some other agent at time step t .

• Cycle conflict: Like the following conflict but with more agents simultane-

ously in a circular pattern.

4

2.1 Multi-Agent Pathfinding

In most MAPF scenarios, it is enough to solve the first two of the mentioned con-

flicts to obtain a valid solution; however, some applications have stricter require-

ments and consider other conflicts, such as the two last mentioned conflicts.

2.1.2 Objective Functions

A MAPF problem might have more than one valid solution. Therefore, most ap-

plications aim to solve a given MAPF problem by finding a solution that opti-

mizes an objective function. The most common ones are makespan and sum of

costs [38].

The makespan M of a joint planΠ= {π1, ...,πk }, is the number of time steps until

all agents reach their destinations [36][40], formally described as:

M(Π) = max
1≤i≤k

|πi | (2.5)

On the other hand, the sum of costs SOC , also known as flowtime, is the sum

of time steps each agent requires to reach its destination [36][40], formally de-

scribed as:

SOC (Π) = ∑
1≤i≤k

|πi | (2.6)

2.1.3 Overview of Multi-Agent Pathfinding Solvers

MAPF is an extensively studied field of research in which numerous different

solving techniques were developed in the past years. These solvers can be

roughly categorized into optimal and suboptimal ones.

Optimal solvers guarantee to return a solution that minimizes an objecive func-

tion (see Chapter 2.1.2). Stern et al. [37] classify four types of optimal solvers: the

first class consists of A*-based algorithms that search the k-agent search space

using an adaption of the A*-algorithm.

Then, there is the increasing cost tree search, which splits MAPF into two prob-

lems: first, finding the cost added by each agent, and second, finding a valid so-

lution with these costs.

Another group are conflict-based searches (CBS), which solve a sequence of

single-agent pathfinding problems by incrementally adding specific constraints

to them in a way that ensures completeness and optimality.

5

2 Basic Principles and State of the Art

Optimality Category Algorithm Literature

Optimal

A* Extensions

ID [36]

OD [36]

EPEA* [16]

M* [44]

Increasing Cost Tree ICT [34]

Conflict Based
CBS [33]

ICBS [5]

Reduction Based

(MDD-)SAT-solver [41]

CSP-solver [30]

ASP [13]

ILP [48]

Bounded-
Suboptimal

Search Based

CBS+HWY [10]

ECBS(+HWY) [3] [10]

EECBS [23]

Suboptimal

HCA* [35]

WHCA* [35]

Rule Based

Push-and-Swap [25]

Push-and-Rotate [12]

TASS [21]

BIBOX [4]

Hybrid

A* + DMs [19]

FAR [18]

MAPP [45]

Table 2.1: Overview of popular MAPF solvers

6

2.1 Multi-Agent Pathfinding

Finally, there are reduction-based approaches, which reduce MAPF to a proposi-

tional satisfiability problem (SAT), a communicating sequential process (CSP), or

similar. These, in turn, can be solved with already existing high-quality designed

algorithms.

Suboptimal solvers aim to rapidly find paths for all agents and are therefore of-

ten a suitable alternative for MAPF problems that have to be scalable for a high

number of agents. Felner et al.[14] classify them into search-based, rule-based,

and hybrid algorithms:

Suboptimal search-based algorithms are often based on modifications or relax-

ations of optimal MAPF algorithms. Some of them are bounded-suboptimal,

which means that they offer shorter solving times by sacrificing optimality within

a desired factor of optimal.

Algorithms that include specific agent-movement rules for different scenarios

rather than massive search belong to the group of suboptimal rule-based ap-

proaches.

Hybrid approaches, in turn, comprise both movement rules and search.

Table 2.1 offers an overview of some popular MAPF approaches. They are classi-

fied into the described categories, with information about optimality and com-

pleteness.

2.1.4 Highway-Using Approaches

Optimally solving MAPF problems is known to be NP-hard [49]. Optimal plan-

ners are therefore only feasible for a low number of agents. One solution for this

issue is offered by the previously mentioned bounded-suboptimal algorithms.

The enhanced conflict base search (ECBS) is the fastest of these, but it becomes

slower as the number of conflicts increases in a given scenario. Hence, Cohen

et al. [10][9] invented a variant of CBS and ECBS that uses a highway layout to

reduce the number of conflicts, thus speeding up the algorithms. The highway

layout works like a simple influencing scheme based on the ideas behind experi-

ence graphs [28] to derive new heuristic values, which encourage the search al-

gorithm to return paths that include the edges of the defined highways. This, in

turn, encourages a global behavior of the agents moving alongside the highway

layout, which avoids collisions.

Cohen et al. [9][10] were not the only researchers who used highways for their

MAPF approach. Jansen and Sturtevant [19] introduced a method that uses di-

7

2 Basic Principles and State of the Art

rection maps to influence heuristic search. These direction maps are created by

an algorithm learning the movements of the agents in a specific world. The fin-

ished maps can then be used to modify the planning process of any heuristic

search by changing the underlying edge costs of the search graph, encouraging

the search algorithm to return paths that correspond to the direction map. This,

in turn, leads to an implicit cooperative behavior of the agents similar to the ap-

proach of Cohen et al. [10][9].

Wang and Botea [18] also use the idea of highways. The first step of their ap-

proach is to impose flow annotations on the given map and create a directed

search graph instead of the usually used undirected one. The flow annotation re-

stricts the traffic on each row and column to only one direction. Alternating rows

have the same horizontal direction, and alternating columns have the same ver-

tical direction. A highway layout emerges by covering the given map with criss-

crossing virtual roads. Additional rules are provided to ensure that no feasible

path becomes infeasible.

Like the first two mentioned approaches, the method presented in this thesis

also uses an influencing schema of movement directions to manipulate heuris-

tic search to return paths that lay within the scheme’s framework referred to as

highway layout. The difference lies in the process of creating the highway layout.

The highway layout is neither designed by humans nor by a learning algorithm;

rather, it results from several collective decisions made by the agents.

2.2 Collective Decision-Making

Making a decision means selecting among alternatives. A collective decision-

making system uses an aggregation mechanism to combine the input of several

individuals to generate a common decision.

2.2.1 Aggregation Methods

There are many ways to aggregate individual preferences to a collective prefer-

ence or outcome.

Let N be a set of individuals and A a set of alternatives; denote the set of linear

orders on A by L(A), where the preferences are assumed to be elements of L(A).

8

2.2 Collective Decision-Making

Taking these assumptions into account, a formal description of an aggregation

method, also called social-choice rule, can be described as:

K : L(A)N → A (2.7)

Thus, a social-choice rule K assigns to each profile p ∈ L(A)N a collective choice

K (p) in A. Harrie de Swart et. al. [11] pointed out some of the more frequently

occurring choice rules, which are:

• Plurality rule: The alternative which polls more than any other is elected.

• Majority rule: If there is an alternative x that defeats every other one in

pairwise comparison, this alternative x must win.

• Borda rule: Points are assigned to the alternatives based on their ranking:

one point for the last choice, two points for the second-to-last choice, and

so on. The point values are summed, and the one with the highest total

points is the winner.

• Approval Voting: The voter can divide the alternatives into two classes:

the ones that the agent approves and the ones that the agent disapproves.

The number of alternatives that are found to be acceptable depend on the

agent. The one that gets the most votes is the winner.

2.2.2 Collective Decisions in Multi-Agent Systems

CDM in artificial systems has been inspired by behavior studies on self-

organizing animal groups. These studies range from unicellular organisms [46]

[29], to social insects [32] [7], fish schools [24], and groups of mammals [22][39].

The behavior of humans has also been studied [1] [2].

Brambilla et al. [6] distinguished CDM systems into two categories: consensus

achievement and task allocation. Consensus achievement concerns a behavior

whereby several agents make a decision on a given matter, whereas in task al-

location the agents allocate themselves to different tasks to maximize collective

performance and reach a common objective. Valentine et al. [43] further divide

consensus achievement into discrete and continuous problems. This classifica-

tion depends on the cardinality of the choices an agent can make. Specifically,

choices can either be finite and countable — in which case one can speak of a

discrete problem — or infinite and measurable, which would be assigned to a

9

2 Basic Principles and State of the Art

continuous problem.

The algorithm presented in this thesis can most likely be assigned to a discrete

consensus achievement problem, which is the reason why the following focuses

on such approaches only.

Wessnitzer and Melhuish [47] solve with their approach a target hunting scenario

with moving preys. In the beginning, each agent favors a prey chosen at random.

At each time step, the agents apply the majority rule over their neighborhood

to reconsider and possibly change their opinions, which leads to a swarm that

decides which prey to hunt first.

Parker and Zhang [27] examine a scenario where the agents have to discriminate

between two sites with different brightness levels and begin in either a searching

state or an idle state. Those in the searching state search for alternatives, whereas

the idle agents wait to be recruited into the process. When an agent finds an alter-

native, it determine its quality, transit to an advocating state, and rejoins its team-

mates. Advocating agents frequently send recruit messages to their teammates,

and the frequency increases with the options’ quality. Agents in the idle and ad-

vocating states are recruitable. When such an agent receives a recruit message,

it reenters the researching state, where it evaluates the quality of the specified

alternative and then enters the advocating state favoring it. Meanwhile, agents

estimate the popularity of their favored option and use this information to test if

a quorum has been reached. Agents in the committed state send commit mes-

sages to those that they encounter. When a robot receives such a message, it

commits to the specified alternative, which happens until a complete consensus

is achieved.

Schneider et al. [31] consider the well-known double bridge scenario from Goss

et al. [17] where a swarm has to find the shortest of two paths between two lo-

cations. Initially, the robots of Schneider et al.’s experiment have their own opin-

ion about the quality of the paths. While traveling between the two locations,

the agents encounter other agents, observe their opinions, and store them into

a memory of size k. In the case of full memory, the oldest opinion is replaced by

the new one. The agents change their current opinion after successively meeting

k agents only favoring these specific other option. This behavior eventually leads

to consensus on one single opinion. Due to a bias induced by the different travel

time, high probability consensus most likely falls on the opinion representing the

shortest path.

10

2.2 Collective Decision-Making

The mentioned approaches solve different problem scenarios, but they all share

a similar rational structure and therefore can be grouped into the same frame-

work, which is called best-of-n problem. Valentine et al. [43] defines the best-of-

n-problem as follows: given a swarm of N agents, agents, a swarm has found a

solution to a particular instance of the best-of-n problem as soon as it makes a

collective decision for any option i ∈ 1, ...,n. A collective decision is represented

by the establishment of a large majority M ≥ (1−δ)N of agents that share the

same preference for a certain option i , where δ, 0 ≤ δ¿ 0.5], represents a tol-

erance threshold set by the designer. In the case δ= 0, the swarm has reached a

consensus decision where all agents favor the same option i .

Strategies for solving best-of-n problems consist of three components: an explor-

ing and a dissemination mechanism and a decision rule [42].

The exploring mechanism is needed to discover possible alternatives of the best-

of-n problem and gather sample estimates of the associated quality. After sam-

pling the quality of an option, the agent transits to a dissemination state where it

shares the opinion within the rest of the swarm. Disseminating an opinion can

be as simple as broadcasting it locally towards other members of the swarm. The

duration of the dissemination influences the collective decision and is therefore

proportional to the quality of the advertised option. Options with higher quality

are advertised for a longer time and have higher chances of being heard by other

members of the swarm. During the dissemination, the agents also listen to the

opinions of others and keep track of their frequency. Before terminating the dis-

semination period, the agents apply a decision rule to reconsider and possibly

change their own opinion. Popular decision rules are represented by the voter

model, with which an agent adopts the opinion of a randomly chosen neighbor,

and the majority rule, with which the agent adopts the opinion shared by the ma-

jority of its neighbors. Other decision rules aggregating different preferences to a

single one, such as the methods mentioned in Chapter 2.2.1, are also possible.

The approach presented in this thesis cannot be classified as a traditional best-

of-n approach like the ones described above. None of the mentioned approaches

can be compared with the one of this thesis. One reason is that the opinion of

each agent about the best option is neither randomly chosen nor a result of an

environment exploration since the environment is already known and the opin-

ion is based on a heuristic search. Another difference is that the agents share

their opinions with all other agents in the scenario rather than only their neigh-

borhood. Furthermore, all of the above-mentioned approaches are based on a

swarm of agents which share similar preferences. In general, the agents in this

11

2 Basic Principles and State of the Art

thesis share the same goal of of finding a way from an initial position to a desti-

nation, but both the initial position and the destination are assigned individually

to each agent, which could lead to situations where preferences regarding the

design of the highways on the map massively differ because the quality of each

decision option may be different for each agent. It should also be mentioned that

most of the recent best-of-n approaches have focused on decision problems with

just two options to decide from. There are just a few studies (i.e., [15] and [31])

that consider more options, such as the approach used in this thesis.

12

3 Methodology

3.1 Definitions

The problem solved by the algorithm introduced in this work can be defined as a

classical MAPF problem [37] described formally in 2.1.1. Further elements about

solving the MAPF problem with a collectively created highway layout are speci-

fied in the following.

Environment and search graph:
The problem topology is represented as a two-dimensional grid map, which

means that the map of the agents’ environment is evenly discretized into a grid of

cells similar to a chess field. Specifically, one cell has eight neighboring cells, four

cardinal and four diagonal. Each cell is either traversable or blocked by a static

obstacle. Hence, a search graph is created with one vertex for each traversable

cell and an undirected edge between two traversable neighboring cells. One ex-

ception is made: there is no edge between two diagonal cells separated by one or

two blocked cells since it would not be physically possible for an agent to move

from one to the other cell without colliding with these obstacles (compare with

Figure 3.1)

Highways:
To avoid collisions and solve conflicts, the agents have to decide collectively

about binding movement restrictions in the form of so-called highways. Each

traversable cell can be a part of one or more highways. Each cell within a high-

way has specified moving directions. Relating to the eight possible neighbor cells,

also eight directions are theoretically conceivable.

A highway layout can host one contiguous or multiple separated highways. In

the viewpoint of the search graph G all highways combined as layout can be de-

scribed as a subgraph GH defined as:

GH = (VH ,EH) where GH ⊂G (3.1)

13

3 Methodology

Figure 3.1: (a) Search graph of an empty grid map. (b) Search graph of a map with

obstacles. (c) Possible design of a highway graph as sub graph of (a)

Figure 3.1c shows an example of a valid highway graph. Valid means that this

graph satisfies the following two rules to prevent edge and vertex conflicts during

movement:

1. Bidirected edges are not allowed

2. A vertex can have multiple successors but only one predecessor

Legal moves:
Like in the formal MAPF description, at every discrete time step, each agent can

either wait in the currently occupied cell or move to a neighboring one. Further-

more, moving is only possible if a corresponding highway edge EH exists and

no waiting agent is occupying the next cell. Moreover, diagonal movements are

possible even if both cells that separate the starting cell from the target one are

occupied by waiting agents. It is assumed that the agents are small enough not

to collide in this situation. Furthermore, two agents can move diagonally if their

paths would crisscross each other since this could be easily solved with a right-

for-left rule or similar in real life. All described scenarios can be comprehended

in Figure 3.2

Further assumptions:
After an agent reaches its target, it disappears from the map. When all agents

have disappeared, the problem is solved.

Furthermore, homogenous agents and uniform speed, as well as complete and

faultless communication between the agents for all decision-making processes,

are assumed.

14

3.1 Definitions

(a) (b) (c)

(d) (e)

Figure 3.2: Highway edges are represented as black arrows. Intended movements

are marked as dotted colored lines. (a) Legal move: Following is al-

lowed. (b) Legal move: Crisscrossing paths are allowed. (c) Legal

move: Agents are assumed to be small enough not to collide. (d) Ille-

gal move: Vertex conflict because of a waiting agent. (e) Illegal move:

No or wrong highway edge.

15

3 Methodology

3.2 The Algorithm: A*+CCHWY

The following described algorithm, named A*+CCHWY, runs separately on each

agent and can be divided into two different parts:

1. Path planning

2. Path execution

The path planning process takes part before the agents start to move. The objec-

tive is to find a path for each agent from a starting to a target position and create

alongside an initial highway layout by making several collective decisions. The

path planning process ends and the plan execution begins when there are no de-

cisions left.

During plan execution, the agents start to move on the highways towards the

goal. Each agent is allowed to change the highway layout on the fly by requesting

permission from the others. The plan execution — and, therefore, the algorithm

— terminates if an agent reaches its goal. The following chapters describe the

path planning and plan execution further.

3.2.1 Path Planning

Algorithm 1 shows the single steps of the path planning process through which

each agent proceeds. It consists of several collective decision rounds on particu-

lar edges of the search graph G to be added to the highway graph GH .

The final result of these rounds of decision-making should be an effective high-

way layout. The example in Figure 3.3 illustrates the difference in quality be-

tween two varying highway layouts for the same problem scenario. Accordingly,

in this work, a proper highway layout is defined as one which has the property of

not needing to be changed during plan execution or needs to be changed as little

as necessary. Additionally, a decent highway layout ensures that agents take only

as large detours as necessary and as small detours as possible.

Opinion Definition:
Creating an effective highway design begins with each agent forming an initial

opinion about which edges should be included in the highway graph. These are

the edges of the path an A*-search returns.

To encourage cooperative movement, the opinion of an agent is able to change

iteration by iteration within the path planning process due to a growing high-

way graph. Every edge added to the highway graph that is not compatible with

16

3.2 The Algorithm: A*+CCHWY

Figure 3.3: Highways are represented as red arrows. Paths of the agents not in-

cluded in the highway design are marked as dashed lines in the color

of the regarding agent. (a) Bad quality: None of the agents can move

to their goals without changing the existing highway layout. (b) Good

quality: All agents can move to their goals without changing the high-

way layout.

Algorithm 1 Path Planning Process
1: procedure PATH_PLANNING()

2: my_path ← ASTAR(graph, hwy_graph, w_penalize, w_reward, start, goal)

3: repeat
4: my_opinion ← DEFINE_OPINION(my_path, highway_graph)

5: SEND_OPINION_TO_OTHERS(my_opinion)

6: open_decisions ← RECEIVE_OTHERS_OPINION()

7: highway_edge ← MAKE_DECISION(open_decisions)

8: UPDATE_GRAPH(highway_graph, highway_edge)

9: if my_path contradicts highway_edge and last search successful then
10: path← ASTAR(graph, hwy_graph, w_penalize, w_reward, start, goal)

11: end if
12: if path is not empty then
13: my_path ← path

14: end if
15: until open_decisions is empty

16: return my_path

17: end procedure

17

3 Methodology

Figure 3.4: Highways are represented as red arrows. Paths of the agents not in-

cluded in the highway design are marked as colored lines (a) Initial

opinion of the agents. (b) Green agent has to replan. Added highway

edge does not fit to its current opinion. (c) No replanning needed.

the previously planned path leads a agent to replan its paths and, therefore, to

change its opinion 3.4). If the replanning is not successful, the agent will stay

with its old path and opinion. Replanning — and, therefore, opinion changing —

is enabled by influencing the A*-search with the previously taken collective deci-

sions. The higher the influence, the larger should be the number of edges of the

highway graph within the returned path.

Described in more detail: a highway graph as an addition to the standard search

graph can be used to modify the planning process of any heuristic search by

changing the underlying costs of traversing the world instead of modifying the

search algorithm itself. For instance, A* expands nodes in order of the f-cost,

where,

f (n) = g (n)+h(n). (3.2)

Weighted-A* adds a weight to the heuristic function h(n) in order to encour-

age expanding nodes with lower heuristic cost. In this approach, the opposite

is done. Inspired by the idea of Jansen and Sturtevant [19] the cost of travers-

ing an edge g (n) is modified. Movements that are congruent with edges in the

highway graph are encouraged, whereas movements in the opposite direction

18

3.2 The Algorithm: A*+CCHWY

are discouraged. Furthermore, movements leading to a cell whose vertex already

has a predecessor within the highway graph are discouraged. The exact reward

is a parameter wr and the exact penalty is a parameter wp . With an underlying

edge cost of c, this leads to the following equation for the g-cost:

g (n) = ∑
(ni ,ni+1)∈E


c ·wr for (ni ,ni+1) ∈ EH

c ·wp for (ni+1,ni) ∈ EH

c ·wp for ni+1 ∈VH ∧ (nx ,ni+1) ∈ EH

c other wi se

(3.3)

The octile distance function was chosen for the heuristics. The octile distance of

two vertices n = (x, y) and n′ = (x ′, y ′) is as follows:

h(n) = d(n,n′) = max(∆x,∆y)+ (
p

2−1)∗mi n(∆x,∆y)

where ∆x = |x −x ′| and ∆y = |y − y ′| (3.4)

Opinion dissemination:
After forming an opinion, the agents send it to all other agents. The content of

the messages can be described as a ballot within which the agents vote for edges

that should be added to the highway graph. In every decision round, each agent

has one vote for each vertex of the search graph that is not already part of the

highway graph or, if it is, does not have a predecessor. With this vote, an agent

can namely elect one out of eight possible predecessors for the corresponding

vertex.

Each of the agents’ votes is weighted. The score of the vote depends on the

heuristic distance between the agents’ start vertex and their vertex of interest.

In consequence, votes for vertices nearer to the agents’ start vertex will obtain a

higher weight than votes for vertices with a greater distance.

The calculation of the weight wd of a vote for a specific vertex n′ with the agents

start vertex n, the octile distance function d(n,n′) (see Equation 3.5) and the

maximum possible node distance D , can be formally described as:

wd = w(n,n′) = D −d(n,n′) (3.5)

Agents abstain from voting for vertices not included in their previously planned

path and about which, therefore, they do not have an opinion. Furthermore,

19

3 Methodology

votes for edges that do not satisfy the two highway graph rules defined in Chapter

3.1 when adding to the highway graph are not valid; hence, they are not included

within the ballot.

Decision-making:
After receiving the ballots of all other agents, the decision-making takes place.

One minority rule and a consecutive plurality rule aggregate the votes to a joint

decision about the edge (n,n′) to be added to the highway graph. First, the mi-

nority rule determines n′ by selecting the cell with the least abstained votes. If

a tie occurs, the vertex with the least divergent votes for a specific predecessor

is chosen. If this does not break the tie, the winner is chosen randomly. Finally,

the plurality rule identifies the predecessor n for the previously selected vertex.

Once again, if a tie occurs, the winner is selected randomly. The winner edge is

then added to the highway graph.

3.2.2 Path Execution

Algorithm 2 shows the process for navigating the agents from their starting to

their goal position. Its single steps are explained in detail in the following.

Requesting changes:
During every iteration, each agent first checks if it needs to change the highway

design in order to move to the next cell of its path. Considering r as a Boolean

variable that defines whether an agent must request a change within the highway

graph (r = Tr ue) or not (r = F al se), the following equation is obtained:

r (n) =
Tr ue for (ni ,ni+1) ∉ EH

F al se other wi se
(3.6)

No matter if an agent is in need of a highway modification or not, it will send a

message to all the others within the next step. This message includes information

about the agent’s position, its next target and, if needed, the requested edge to be

added to the highway graph and the number of steps an agent could take after

the requested change until a new one is needed. This number is infinite when no

more changes are needed to reach the goal.

Deciding on the others’ requests:
After an agent receives all the messages, it starts deciding on open requests. An

agent can either agree or disagree with a request depending on what side effects

20

3.2 The Algorithm: A*+CCHWY

(a) (b) (c) (d)

Figure 3.5: Possible side effects of adding an edge to the highway graph. Edges

within the highway graph are marked as black arrows. Edges to be

added to the graph are marked as blue arrows. (a) Initial highway lay-

out. (b) Edge is removed because of vertex conflict. (c) Edges are re-

moved because of an edge and a vertex conflict. (d) Highway graph

after adding the two edges

the desired edge would cause when added to the highway graph. The ability to

disagree with a request is important due to the fact that adding an edge to the

original highway graph also means to remove existing edges that would conflict

with the new one according to the rules indicated in Chapter 3.1. Thus, an agent

disagrees with a request if it will affect a highway edge that it needs in order to

move to its next target. Figure 3.5 shows an example of possible side effects.

Let the Boolean variable a be the answer of an agent deciding whether to agree

(a = Tr ue) or disagree (a = F al se) to a request. Let (nr ,n′
r) be the requested edge

and ni be the current position of the deciding agent. Accordingly, the result of a

is defined as follows:

a(nr) =



F al se for (nr ,n′
r) = (n′

i ,ni)∧ (ni ,n′
i) ∈ EH Edge Conflict (1)

F al se for (nr ,n′
r) = (n′

i ,ni)∧xr ≤ xi Edge Conflict (2)

F al se for n′
r = ni ∧ (ni ,n′

i) ∈ EH Vertex Conflict (3)

F al se for n′
r = ni ∧xr ≤ xi Vertex Conflict (4)

Tr ue other wi se No Conflict (5)

(3.7)

Updating the highway graph:
After deciding on all requests, the agent sends the results to the others and re-

ceives their opinions in return.

To grant a request, all agents have to agree to it. If only one agent decides against

21

3 Methodology

Figure 3.6: Map and highway graph of a deadlock situation. Each agent is wait-

ing for the other’s approval to add the requested edge to the highway

graph. According to Equation 3.7.4 both will disagree on the request.

the change, it will not take place. Subsequently, the highway graph will be up-

dated with the requests which have reached a conses agreement.

After updating the highway graph, the agents can finally move one step ahead on

their path if it is possible.

Deadlocks:
During path execution, the agents sometimes have to wait at their current posi-

tion because a desired change in the highway layout has not been approved by

the others. Such situations can lead to deadlocks, which can be seen as circular

wait situations as defined in Coffman et al. [8]. Figure 3.6 shows an example of

such a deadlock. The agents are waiting for the other’s approval, and no one is

able to make further progress. With many agents placed on a map and a not op-

timal highway layout, deadlocks can happen quite often, and propagate quickly

as the agents in a deadlock could block more agents behind them.

When addressing deadlocks, the first step is to identify whether a deadlock has

occurred: The condition that triggers the deadlock identification of each agent

is, that it hasn’t moved within the last two time steps. The agent than starts a

deadlock detection process which recursively builds a chain of agents, each ei-

ther waiting for the next one to move, or waiting on a permission for a highway

modification, starting from itself. The check terminates when it comes across an

22

3.2 The Algorithm: A*+CCHWY

agent wanting to move to an unoccupied node and the edge to it lays within the

highway graph or, if not, the agent’s request to add the edge has been permitted.

In this case, no deadlock is detected. On the other hand the algorithm terminates

when an already seen agent is reencountered, which indicates a deadlock.

All agents then switch back to the path-planning process, where the agents in-

cluded within the deadlock replan their paths and decide on new edges to be in-

cluded in the highway layout. Beforehand, the edge costs from the current vertex

to the neighboring ones is modified in each agents’ search graphs. If one neigh-

boring vertex is the target of an agent that is not part of the deadlock, the edge

will get an infinitely high cost. The same happens with edges of currently occu-

pied vertices regardless of whether the occupying agent is within the deadlock or

not. These cost changes will be deleted right after solving the deadlock.

In the event that the A*-search fails for each agent and no more edges can be

added to the highway graph, the latter is deleted, and the algorithm switches

once again to the path-planning process, but, this time, with the predefined pa-

rameter for wp and wr and with all agents contributing. If this, again, does not

solve the deadlock, the algorithm is terminated.

23

3 Methodology

Algorithm 2 Path Execution Process
1: procedure PATHEXECUTION()

2: deadlock ← False

3: while my_pos 6= goal_pos do
4: deadlock ← RECEIVE_DEADLOCK_MESSAGES()

5: next_pos ← my_path[-1]

6: if deadlock then
7: SOLVE_DEADLOCK()

8: end if
9: change_request ← CHECK_NEXT_MOVE(next_pos, hwy_graph)

10: SEND_TO_OTHERS(my_pos, next_pos, change_request)

11: all_requests ← RECEIVE_REQUESTS()

12: my_decisions ← DECIDE_ON_REQUESTS(all_requests)

13: SEND_DECISIONS(my_decisions)

14: all_decisions ← RECEIVE_DECISIONS()

15: UPDATE_HIGHWAY_GRAPH(all_decisions)

16: if IS_MOVING_POSSIBLE() then
17: my_pos ← my_path.POP()

18: else if IS_DEADLOCK() then
19: SEND_DEADLOCK_MESSAGE()

20: end if
21: end while
22: end procedure

24

4 Experiments

The following chapters describe the experiments performed to analyze the pre-

viously introduced algorithm A*+CCHWY. First, the implemented simulation

model is described, followed by the used benchmark suite and the experimen-

tal settings. Finally, the most important results are identified and analyzed.

4.1 Implementation

The A*+CCHWY, and the algorithms used for the experiments were implemented

in Python within a simulation model developed for this purpose.

The implementation of this simulation model was inspired by the agent-based

modeling framework MESA [20][26]. Figure 4.1 shows a simple UML diagram of

the following described main components.

The model class represents the core of the simulation model and defines what

happens during the simulation run. It serves as a container for the other com-

ponents and holds user-defined attributes, such as the MAPF solver, to be used,

including its parameter, the number of agents, the map of the agents’ world, the

agents’ start and goal positions, or similar specifications. Furthermore, it collects

the data needed for the bench-marking, such as the sum of cost or the makespan.

Each instantiation of the model class serves as a simulation run for a specific

benchmark problem and a selected solver.

The agent class describes the agent and its behaviors. Two sub-classes are inher-

ited by the agent class. One class describes dependent agents, which require a

central path planner to plan their paths. Their only behavior is to move according

to their given paths step by step until reaching their goal. Meanwhile, the second

class describes independent, agents which plan their path on their own. The path

planner here is included within the class. Furthermore, this class includes meth-

ods for simulating the communication capabilities between the agent. For this

25

4 Experiments

Figure 4.1: Simplified UML model of the simulation model

26

4.2 Problem-Based Benchmark Suite

purpose, public instance variables are defined for each communication topic. All

other class attributes aren’t access-able from outside the class.

The scheduler module controls the agents’ activation regime. At each time step

of the model class, the scheduler is called to activate the agents. For this, a staged

activation is implemented, allowing the agent activation to be divided into sev-

eral stages instead of a single step. All agents execute one stage before proceeding

to the next.

The world module is an abstraction of the given grid map. It contains informa-

tion about the map size, the position of obstacles, and, in the case of A*+CCHWY,

the highway design. Furthermore, it stores the agents’ positions and reports any

collisions or illegal movements that occur. In addition, it serves as the basis for

the visualization.

The path-planner module is needed only for the agents dependent on a cen-

tral path planner. It runs the selected MAPF algorithm and provides the planned

paths to the appropriate agents.

The batch runner works by generating independent runs for all possible combi-

nations of parameter settings that the user passed to the runner (i.e., the bench-

mark map, number of agents, type of MAPF solver, solver’s parameter setting,

and so on). The iterations argument in the batch runner allows for defining how

many benchmark scenarios are needed to run a particular combination of set-

tings. Each run terminates after a set time limit or until the model terminates. At

that time, the batch runner collects the data needed for the benchmarking from

the model class and stores it in a CSV file.

4.2 Problem-Based Benchmark Suite

The benchmark suite used in this work [38] provides grid-based maps of seven

categories: real cities, videos games, open grids with or without obstacles, maze-

like, room-like, and warehouse-like grids. Each of these maps is assigned to 25

random and even scenarios with a list of paired start and target positions (prob-

lems). The random scenarios consist of 1,000 purely random-generated prob-

lems. Meanwhile, the even scenarios consist of evenly distributed buckets of

random-generated problems with the same length. The following evaluation is

made on a selection of these maps, whose characteristics can be traced in Table

4.2, and problems out of the even scenarios.

27

4 Experiments

Map Dimension #States Description

Empty

32x32 1024 No static obstacles

Random

32x32
922

819

Random 10: 10% obstacles

Random 20: 20% obstacles

Room

32x32 682
64 3×3 rooms connected by

1 single-cell door

Maze

32x32 666 2-cell-wide corridors

City

256x256 47540
Map of Berlin

Large map with 72% free space

Game

65 x 81 2445
Map from the game Dragon Age Origin

with both wide areas and bottlenecks

Warehouse

161x63 5699
200 rectangular obstacles building

long single-cell-wide corridors

Table 4.1: Characteristics of maps used in the benchmark

28

4.3 Experimental Design

4.3 Experimental Design

The A*+CCHWY is analyzed via two main experiments, the first of which is

divided into four sub-experiments and the second of which into two sub-

experiments. Each experiment yields a data set out of 31 independent experi-

mental runs for each parameter setting and map. The start and target positions

of the agents (problems) are taken from the even scenario of the previously pre-

sented benchmark suite.

For each experiment, the metrics for the sum of cost (see equation 2.6), the

makespan (see equation2.6), the number of highway changes, and the number

of solvable and unsolvable deadlocks are recorded. In addition, two different

success rates are computed. The first success rate S1 represents the number of

solved problems in relation to the total number of problems or agent quantity.

Meanwhile, the second success rate S2 is the number of completely solved sce-

narios in relation to the total number of experimental runs. The experimental

parameter setting of the individual experiments is described in the following and

can likewise be found in the overview presented in Table 4.3.

4.3.1 Experiment 1: Parameter analysis

Three parameter can be chosen to affect the performance of the A*+CCHWY. On

the one hand the weights wr and wp to influence the A*-search. On the other

hand the weight wd for weighting the votes within decision making in the path

finding process. To examine the impact of these parameters four experiments

were preformed:

Rewarding the use of highways
The most important parameter for creating an effective highway layout is weight

wr . This rewards edges that conform with the highway layout and therefore de-

termines the level of encouragement for the A*-search to return paths that in-

clude such edges.

It is presumed that a smaller wr during path planning results in fewer changes

within the highway layout during path execution and in turn a higher success

rate of the algorithm. Furthermore, it is expected that a smaller wr leads to a

deterioration of the makespan and sum of cost. To prove these hypotheses, the

following experiments were performed.

Experiment 1.1 runs on the "Empty," "Random10," "Random20," "Room," and

"Maze" maps. The agent quantity is set to 64 for the empty and random maps, 56

29

4 Experiments

for the room map, and 40 for the maze map. The 31 independent experimental

runs were performed for each wr ∈ {0.0,0.25,0.5,0.75,1.0} and wp ∈ {1.0,1.5}.

Experiment 1.3 runs on the "Empty," "Random10," and "Random20" maps. The

number of agents is set to 40 for each map. The parameters are set as in Exper-

iment 1.1. Since in this experiment all metrics beside the success rate are im-

portant, each parameter setting was run until 31 data sets with a success rate of

100% were achieved to avoid distorting the results.

Penalizing conflicting edges
Almost as important as the weight wr is the parameter wp . This weight penalizes

edges that contradict the highway layout by increasing their costs. It therefore de-

termines the level of encouragement for the A*-search to avoid returning paths

that include such edges.

Opposite to wr , it is presumed that a larger wp leads to less changes in the high-

way layout during path execution. This should in turn yield a larger success

rate of the algorithm. In addition, it is expected that a larger wp increases the

makespan and sum of cost.

To prove these hypotheses the following experiments were preformed:

Experiment 1.2 is constructed similar to Experiment 1.1 but is done for each

wp ∈ {1.0,1.25,1.5,2.0,3.0, inf} and wr ∈ {1.0,0.5}.

Experiment 1.4 is constructed similar to Experiment 1.3 and runs using the same

parameter for wp and wr as in Experiment 1.2.

Weighted decision making
The weight wd describes the influence of a single agent’s opinion regarding

the outcome of the decision of which edge should be added to the highway

graph and weights the votes cast for that edge. It is presumed that a weighted

decision-making process results in fewer highway changes during path execu-

tion than does an unweighted one. To prove this hypothesis, each of the pre-

viously described experiments is run for both a decision-making weight wd = 1

and wd = w(n,n′) (see Equation 3.5).

4.3.2 Experiment 2: The Algorithm Performance

This experiment is used to determine the performance of A*+CCHWY with re-

spect to the makespan, sum of cost, and success rate S2. For this purpose,

A*+CCHWY with wp = 1.25 and wr = 0.25, is compared with three selected path

planners, all of which are based on the A* search:

30

4.4 Discussion of Results

1. Single-agent: Solving MAPF problems by successively executing single

agent plans, considering other agents as obstacles. If no path is found for

an agent due to other blocking agents, the corresponding agent replan its

path at a later time.

2. Priority-based: Each agent is assigned a random priority. The agent paths

are planned one after another from the highest-priority agent to the lowest-

priority one, considering dynamic obstacles (higher-priority agents).

3. CBS[30]

All MAPF solvers run on the "Empty," map with a time limit of 60s as well as on

the "City," "Game," and "Warehouse" maps with a time limit of 600s. The agent

quantity varies from 5 too 100 agents for the "Empty" and for 5 too 50 agents for

the other maps with a step size of five agents.

4.4 Discussion of Results

The following chapter presents and discusses the most important results of the

beforehand described experiments for chosen parameter settings. The param-

eter settings not included in the discussion produced outcomes with similar ef-

fects and were therefore not considered in more detail. All statements made in

the evaluation were tested for statistical relevance using a Kruskal-Wallis H test

or Mann-Whitney U test with a significance level α= 0.05.

4.4.1 Experiment 1: Parameter Analysis

The focus of the analysis was on the "Random20" map, but the presented results

can also be applied to the others, including the "Room"; "Empty"; and "Ran-

dom10" maps. Latter maps only differ in number of obstacles, and they are thus

comparable to each other. Moreover, this application to the different maps is

possible since the effects of the parameters differ only in their expression and

not in their effects.

The maze map, however, is a special case. It turned out that this map was not

solvable with the A*+CCHWY for all scenarios independent of the algorithm’s pa-

rameter settings. This outcome is due to the presence of one-cell-wide corridors

and a lack of options for detours for the agents to arrive at their target destina-

tions. In this map, if two agents meet head-to-head in such a corridor, not even

31

4 Experiments

Figure 4.2: Number of highway changes during path execution of A*+CCHWY un-

til MAPF problem of 40 agents was solved on the "Random20" map.

the deadlock solver is of help. Further, if an agent detects that is arriving in a

deadlock, it has to re-plan its path. Since detours are not possible within the cor-

ridor, the re-planning is not successful for any agent in the deadlock and no edges

is added to the highway graph. As a result, the deadlock remains and again the

agents in the maze has to re-plan their path. This time, however, the agents can

design a whole new highway layout, but even if the agents decide to designate

a single direction for movement through a corridor, they will still become stuck

in the deadlock since one of the agents would request a change in the highway

layout in the next step and the other agent would not agree. After the second

deadlock fails to be solved, the algorithm terminates.

Effects on the number of highway changes
Figure 4.2 displays the number of changes in the highway layout during path

execution as a result of Experiment 1.3 with wp = 1 and Experiment 1.4 with

wr = 0.5.

The boxplots describe the relationship between the level of rewarding or penaliz-

ing edges of the search graph within the path planning process and the numbers

of changes in the highway layout during path execution.

It is first noticeable that a weighted decision process (blue boxplots) during path

planning caused statistically significant fewer changes in the highway layout

than the unweighted process (red boxplots) regardless of wp and wr .The differ-

ence between wd = 1 and wd = w(n,n′) with respect to the median was around

40 changes and corresponded to a moderate correlation of of r = 0.45.

Furthermore, the number of changes can be seen to have had the tendency to

32

4.4 Discussion of Results

increase for both a decreasing wp and an increasing wr . However, it should be

noted that for wr = 0.5 the effect strength approaches zero from wp = 1.5.

Taking these results into account, the following hypotheses could be confirmed:

1. A weighted decision-making process within the path planning process re-

sults in fewer changes in the highway layout during path execution.

2. A smaller wr leads to a smaller number of changes in the highway layout.

3. An increasing wp decreases the number of changes (with the restriction

that the effect strength runs toward zero from wr > 1.5).

It can be concluded that weighted votes lead to better decisions regarding high-

way layout. The weight wd influences the decision-making process in the man-

ner that the urgency of each agent whether a certain edge should be added to the

highway graph is taken into account. The further away a certain edge is in rela-

tion to the agent’s position, the more likely the agent has the possibility to re-plan

its path. In this case, the weight wd is smaller than if the edge is directly in front

of the agent because then the possibilities to re-plan are less.

In addition, the weights wr and wp encourage an implicit cooperative behavior

of the agents. The larger wr is the more the A*-search is influenced by previous

decisions and returns paths that contains an increased number of edges from the

highway graph. This leads to a further result where the opinion of the agents re-

garding how a suitable highway layout should look begins to differ less and less

from each other. Thus, the agents find a layout solution regarding that is suitable

for a large number of agents. This shared solution means fewer changes need to

be made during path execution due to vertex conflicts since the agents move in

similar ways to a great degree to get to their destination.

The situation is similar with wp becomes larger, but in this case edge conflicts

are avoided instead of vertex conflicts. A larger wp influences the A*-search to

return paths with a decreased number of edges, that would be in conflict with

the rules of the highway graph (see Chapter3.1). Thus, during path execution

there are fewer head-to-head conflicts and resulting deadlocks, which solution

would lead to changes in the highway layout.

Effects on sum of cost and makespan
Figure 4.3 presents the influence of the rewarding (wr) and penalizing (wp)

edges of the search graph on the makespan, sum of cost, and the amount of

solvable deadlocks during the path planning process. The results are from ex-

periment 1.3, where wp = 1.0, and 1.4 where wr = 0.5. It should be noted that the

33

4 Experiments

Figure 4.3: MAPF problem of 40 agents was solved on the "Random20" map.

34

4.4 Discussion of Results

choice of wd has no statistically significant effect on any of the metrics indepen-

dent of the choice of wr and wp . Due to this lack of effect, wd is only referred

to as a weighted decision-making process with the expression wd = w(n,n′) (see

Equation3.5) in the following.

Concerning the diagrams in Figure 4.3 with a varying wr , it is noticeable that wr

had no statistically relevant influence on the amount of deadlocks, whereas the

median of the sum of cost as well as the makespan decreased with an increasing

wr . Moreover, the strength of the effect was lower for the sum of costs than for

the makespan. It should nevertheless be noted that for makespan, the largest ef-

fect strength was in the range of 0.25 <= wr <= 0.75 with a moderate correlation

r = 0.45. In addition, there was no statically relevant difference with respect to

the median for wr < 0.25 as well as for wr > 0.75. For the sum of cost, however,

the median decreased almost linearly when increasing wr with a weak correla-

tion r = 0.32.

The results for a varying wp differed from those for a varying wr . While the me-

dian of the makespan, in the range 1.25 <= wp <= 2, increases with a greater wp ,

the median of the sum of costs remained largely constant for all wp . Moreover, in

contrast to wr , the number of deadlocks decreased with a greater wp . It should

also be noted here that the effect strength approached zero from wp >= 2.

In view of the results, the hypothesis that the sum of cost increases with increas-

ing wp was rejected. In contrast, the following hypotheses were approved with

some exceptions:

1. The sum of cost and the makespan deteriorates with a decreasing wr

(only applies for 0.25 <= wr <= 0.75).

2. The makespan increases with an increasing wp

(only applies for 1.25 <= wp <= 2).

The effect of wp and wr can be explained as follows: The effect of wp and wr can

be explained as follows. As described before, both parameters influence the A*-

search. The higher the wr or wp , the higher the degree of influence will be and

the further the returned path will deviate from optimality. Due to this deviation

from optimality, makespan and flowtime increase as wr or wp decreases. That

the flowtime nevertheless seems to remain largely constant for a varying wp is

due to the fact that head-to-head conflicts between the agents are avoided with

an increasing wp . The higher the wp is, the larger the detours of the agents’ initial

paths are but also the fewer there are of deadlocks. Therefore, the additional

detours and waiting times resulting from these deadlocks are also smaller.

35

4 Experiments

Figure 4.4: Successrate S1 of the A*+CCHWY on the "Empty," "Random 10," and

"Random 20," map with wp = 1, wd = w(n,n′) and 64 Agents

Effects on the success-rate
To describe the effects of the parameter settings on the success rate, this section

concentrates on the results from experiment 1.1, where wp = 1, and the results

from experiment 1.2, where wr = 0.5. In both experiments with wd = w(n,n0).

The results of experiment 1.1 are shown in figure 4.4 and 4.5. They show the influ-

ence of a varying wr on the number of problems solved, within an experimental

run or scenario, described as success rate S1. When comparing the diagrams for

the different maps, it is first noticeable that the success rate deteriorates with an

increasing number of obstacles. Upon closer examination of the results for the

"Random20" map, one can see that the best success rate, in respect to the me-

dian, was reached when wr = 0.5. The success rate decreased with an increasing

wr for 0.25 <= wr <= 0.75. The cases where wr = 0 and wr = 1 did not fit in the

overall picture of a decreasing success rate. When wr = 1, the success rate was

too high, and when wr = 0, it was too low.

36

4.4 Discussion of Results

Figure 4.5: Successrate S1 of the A*+CCHWY on the "Empty," "Random 10," and

"Random 20" map with wr = 0.5, wd = w(n,n′) and 64 Agents

Figure 4.6: No. of decision rounds of the A*+CCHWY during path planning

37

4 Experiments

The results of experiment 1.2 are shown in Figure 4.4, and they reveal the influ-

ence of a varying wp on the success rate S1. By comparing the results of each

map, it can be seen that in experiment 1.1, the success rate deteriorated when

the number of obstacles increased. Focusing on the "Random 10" and "Random

20" maps, it can be further observed that the success rate decreased with an in-

creasing wp for 1.25 >= w p >= 3. Notably, the drop for the "Random10" map

is significantly stronger than for the "Random20" map. For both maps, however,

the effect strength decreases with an increasing wr .

In response to the results of experiment 1.1 and experiment 1.2, the hypoth-

esis that a smaller wr as leads to a higher success rate can be approved for

0.75 <= wr <= 0.25. In addition the hypothesis that a bigger wr leads to higher

success rate can be approved.

The outcomes of the experiments 1.1 and 1.2 can be explained as follows: If the

scenario is in general solvable for the A*+CCHWY, the success rate depends on

the runtime of the path planning and path execution process during an experi-

mental run with a set time limit.

The runtime of the path planning process in turn depends on the number of

decision rounds and the possible path re-planning of the agents. In addition,

the duration of the A*-search plays also a role. In the path execution process,

the number deadlocks have the most influence on the runtime of the algorithm,

since solving deadlocks means to re-plan paths.

Based on this, it can be concluded that the difference in success rates between

the three maps is related to the fact that when there is a higher number of obsta-

cles in a map, there is less free space available. As a result, the paths of the agents

cross more often and in turn a higher number of decision rounds are needed

during path planning as well as a higher quantity of deadlocks during path exe-

cution.

The outcomes of the "Random20" map are related to the amount quantity of

decision rounds during the path planning process. With a decreasing wr , the

number of decision rounds decreases (see Figure 4.6), This decrease in turn also

reduces the runtime of the path planning process. The reason for this is that a

decreasing wr leads to more common opinion among the agents regarding the

highway layout due to the influenced A*- search. Since the agents only have to

decide on the edges that are included in their opinion, the decision round de-

creases if the opinions of the agents are similar. That this does not apply for

wr = 0 and wr = 1 could be due to the number of expanded nodes during the

38

4.4 Discussion of Results

A*-search. However, to provide an explanation to this event requires further ex-

periments that were beyond the scope of this thesis. The effect of wp on success

rate can also be explained with the number of decision rounds needed during

path planning. As one can see in Figure 4.6 the number of decision rounds in-

creases almost exponentially with an increasing wp . The result is a higher run

time during the path planning process and less remaining time for path execu-

tion, which in turn affects the success rate. That wp = 1 deviates from the norm

is explained by the resulting higher quantity of deadlock compared to the others.

Since deadlocks are solved through path re-planning, they effect the runtime of

the path execution and therefore reduce the success rate for wp = 1.

4.4.2 Experiment 2: The Algorithm Performance

The results of experiment 2.1 as well as experiment2.2 are shown in Figure 4.7. It

can be seen that A*+CCHWY worked best on the empty map. There, the success

rate only droped from a number of agents of 60. On the game map, the suc-

cess rate already fluctuated at 25 agents. However, with a maximum range of 50

agents, the experiment could not show the limit of the algorithm on this map. On

the warehouse map, the success rate already droped at 35 agents and on the city

map it performed worst with a decreasing success rate from 10 agents. In com-

parison to the other algorithms, the A*+CCHWY scaled better as the CBS for all

maps. Hereby, it must be said that the CBS couldn’t even solve the "Warehouse",

"Game" and "City" map with five agents.

In addition the A*+CCHWY outperformed the priority-based planner on the

"Empty," "Game" and "City," but not on the "Warehouse" map. Finally even the

single-agent planner could be beaten from the A*+CCHWY on the "Game" map,

but not on the others.

The advantage of A*+CCHWY over CBS and the priority-based algorithm is that

the conflicts regarding the paths of the agents are solved by a time-saving col-

lective decisions. In addition, conflicts are reduced by the influenced A*-search,

and resulting common opinion about the highway layout of the agents. This also

reduces the runtime of the algorithm and makes it more scalable for a higher

number of agents.

The fact that A*+CCHWY performed worse on the warehouse map may be due to

the fact that a lot of replanning takes place. Replanning is always necessary when

the previously made decision does not conform with the opinion of an agent.

Due to the layout of the map, the agents more likely have similar paths. Thus,

39

4 Experiments

Figure 4.7: Performance of A*+CCHWY in comparison

40

4.4 Discussion of Results

a decision about an edge that has to be added to the highway graph always in-

volves a high number of agents, all of whom need to replan their path. However,

these are only assumptions, which need to be investigated further.

If one looks at the makespan and sum of cost which is be displayed exemplary

for the "Empty" map in Figure 4.7, it can be seen that the A*+CCHWY performed

worse than the CBS and similar or worse than the priority-based planner. Never-

theless, no statement can be made about the suitability of A*+CCHWY, if one only

considers the amount of deviation compared to the other planners. It always de-

pends on the situation in which the MAPF solver is used whether a deviation of x

time steps is marginal or not.

Even though A*+CCHWY sacrifices optimality, it has been shown that the per-

formance in terms of sum of cost and makespan is still significantly better, than

using a single agent planner for a MAPF problem. Following A*+CCHWY is suit-

able as a MAPF if optimality is not an issue.

At the end it must said that the A*+CCHWY would perform even better in respect

to the success rate if the computing cost will be splitted on the single agents,

which is possible due to the design of the algorithm but couldn’t be simulated in

the experiments.

41

4
E

xp
erim

en
ts

ID wr wp wd Map (Agent No.) Time Limit

1.1 0.0, 0.25, 0.5, 0.75, 1.0 1.0, 1.5

1.0, w(n,n’)

Empty (64),

Random10 (64),

Random20 (64),

Room (56),

Maze (40)

60s

1.2 1.0, 0.5 1.0, 1.25, 1.5, 2.0, 3.0, inf

1.3 0.0, 0.25, 0.5, 0.75, 1.0 1.0, 1.5

1.0, w(n,n’)

Empty (40),

Random10 (40),

Random20 (40),

Room (40)

inf

1.4 1.0, 0.5 1.0, 1.25, 1.5, 2.0, 3.0, inf

Table 4.2: Experimental design of Experiment 1: Parameter Analysis

ID Maps Agent No. Time Limit Solver

2.1 Empty 5-100 (steps of 5) 60s
A*+CCHWY,

Single-Agent,

Priority-Based,

CBS
2.2 Warehouse, Game, Berlin 5-50 (steps of 5) 600s

Table 4.3: Experimental design of Experiment 2: Algorithm Quality

42

5 Conclusion and Outlook

In this thesis a new suboptimal approach for multi-agent path finding on grid

maps was presented. The algorithm named A*+CCHWY utilizes an A*-based al-

gorithm that prevents collisions by a binding highway layout created through

several collective decisions.

Considering the problem topology as a graph with nodes for each grid cell and

undirected edges between adjacent cells, then in each decision round, the agents

vote for one edge to be added to the highway layout. Additional rules for the vot-

ing also ensure that the resulting layout will be designed so that no collisions are

possible when moving along the highways. The agents determine their opinion

for the decision making process with the help of an A*-search. This A*-search is

influenced by the two parameters wr and wp . While wr lowers the cost for edges

that are already included in the highway graph, wp increases the cost for edges

that could lead to collisions between the agents when adding to the highway lay-

out. Thus, depending on the settings of these two parameters, the A*-search re-

turns paths that include or do not include such edges in a certain amount of de-

gree. The more the highway graph grows, the more the A*-search is influenced,

which in turn leads to a more common opinion among the agents about the de-

sign of the highway layout. Therefore, at the end of the decision rounds a high-

way layout is created that is largely suitable for all agents to reach their destina-

tions. However, to guarantee that each agent arrives at its destination, the agents

are allowed to change the highway layout during the path execution process if

the other agents agree.

The experiments carried out within the framework of this thesis showed that the

choice of parameters to affect the A*-search is results in a tradeoff between the

quality of the highway layout, the sum of cost or makespan, and the speed of the

algorithm. Thus, it became apparent that, except for a few exceptions, a decreas-

ing wr leads to a better runtime and highway layout but that it also leads to an

increased sum of cost and makespan. In contrast, an increasing wp was found to

lead to both a better highway layout and an increased makespan; however, the

43

5 Conclusion and Outlook

run time of the algorithm also expanded. Regarding the sum of cost, it remained

the same since the amount of deadlocks and the resulting path re-planning de-

creased.

The analysis of the parameter revealed in addition, that A*+CCHWY cannot solve

problems in maze- like maps with one-cell-wide corridors and is therefore not

complete.

Considering the performance compared to other planners, the A*+CCHWY scales

significantly better than a CBS. For extremely large maps as well as maps with

considerable free space, it also scales better than a simple priority-based plan-

ner. Nevertheless, it shows minor weaknesses for warehouse-like domains. Even

if A*+CCHWY sacrifices optimality, the results show that its performance in terms

of sum of cost and makespan are still significantly better than when a single-

agent planner is used for a MAPF problem.

Despite any limitations, the approach presented in this paper demonstrates the

potential of solving MAPF through collectively created highways. However, there

are many areas that can be examined for potential improvement of the algo-

rithm’s performance as well as the suitability of this approach for real-world ap-

plications. For example, why the A*+CCHWY scales worse to warehouse-like

maps and how to solve this issue could be investigated. In addition, future re-

search could examine the impact a more informed heuristic within the A*-search

would have on the algorithm. Furthermore, the impact different opinion defini-

tions or opinion aggregation methods have on the quality of the highway layout

and performance of the algorithm could also be examined. Likewise, future re-

search could determine which problems cannot be solved with the A*+CCHWY,

such as one cell-wide mazes, and techniques could be developed to tackle these

issues. However, the most interesting and important research topics would con-

cern making the algorithm more robust and suitable for real-world applications.

This encompasses an investigation into whether and how the algorithm would

perform a lifelong MAPF and an examination of how the scope of communica-

tion between the agents could be reduced, and how to tackle communication

problems, since a complete and faultless communication is currently a prereq-

uisite for the success of the algorithm.

44

Bibliography

[1] Kenneth J. Arrow. Social Choice and Individual Values. Yale University Press,

June 2012.

[2] David Austen-Smith, John Duggan, and Jeffrey S. Banks, editors. Social

Choice and Strategic Decisions: Essays in Honour of Jeffrey S. Banks. Stud-

ies in Choice and Welfare. Springer, Berlin ; New York, 2005.

[3] Max Barer, Guni Sharon, Roni Stern, and Ariel Felner. Suboptimal Variants of

the Conflict-Based Search Algorithm for the Multi-Agent Pathfinding Prob-

lem. Frontiers in Artificial Intelligence and Applications, 263:961–962, Jan-

uary 2014.

[4] Adi Botea and Pavel Surynek. Multi-Agent Path Finding on Strongly Bicon-

nected Digraphs. Proceedings of the AAAI Conference on Artificial Intelli-

gence, 29(1), February 2015.

[5] Eli Boyarski, Ariel Felner, Roni Stern, Guni Sharon, David Tolpin, Oded Bet-

zalel, and Eyal Shimony. Icbs: Improved conflict-based search algorithm for

multi-agent pathfinding, 2015.

[6] Manuele Brambilla, Eliseo Ferrante, Mauro Birattari, and Marco Dorigo.

Swarm robotics: A review from the swarm engineering perspective. Swarm

Intelligence, 7(1):1–41, March 2013.

[7] Scott Camazine, editor. Self-Organization in Biological Systems. Princeton

Studies in Complexity. Princeton Univ. Press, Princeton, NJ, 2. print., and 1.

paperback print edition, 2003.

[8] E. G. Coffman, M. Elphick, and A. Shoshani. System Deadlocks. ACM Com-

puting Surveys, 3(2):67–78, June 1971.

[9] Liron Cohen and Sven Koenig. Bounded suboptimal multi-agent path find-

ing using highways. pages 3978–3979, January 2016.

45

Bibliography

[10] Liron Cohen and Sven Koenig. Bounded suboptimal multi-agent path find-

ing using highways. In Proceedings of the Twenty-Fifth International Joint

Conference on Artificial Intelligence, IJCAI’16, page 3978–3979. AAAI Press,

2016.

[11] Harrie de Swart, Ad van Deemen, Eliora van der Hout, and Peter Kop. Cat-

egoric and Ordinal Voting: An Overview. In Gerhard Goos, Juris Hartmanis,

Jan van Leeuwen, Harrie de Swart, Ewa Orłowska, Gunther Schmidt, and

Marc Roubens, editors, Theory and Applications of Relational Structures as

Knowledge Instruments, volume 2929, pages 147–195. Springer Berlin Hei-

delberg, Berlin, Heidelberg, 2003.

[12] B. de Wilde, A. W. Ter Mors, and C. Witteveen. Push and Rotate: A Com-

plete Multi-agent Pathfinding Algorithm. Journal of Artificial Intelligence

Research, 51:443–492, October 2014.

[13] Esra Erdem, Doga G. Kisa, Umut Oztok, and Peter Schüller. A general formal

framework for pathfinding problems with multiple agents. In Proceedings

of the Twenty-Seventh AAAI Conference on Artificial Intelligence, AAAI’13,

pages 290–296, Bellevue, Washington, July 2013. AAAI Press.

[14] Ariel Felner, Roni Stern, Eyal Shimony, Eli Boyarski, Meir Goldenerg, Guni

Sharon, Nathan Sturtevant, Glenn Wagner, and Pavel Surynek. Search-

Based Optimal Solvers for the Multi-Agent Pathfinding Problem: Summary

and Challenges. page 9, 2017.

[15] Simon Garnier, Maud Combe, Christian Jost, and Guy Theraulaz. Do Ants

Need to Estimate the Geometrical Properties of Trail Bifurcations to Find an

Efficient Route? a Swarm Robotics Test Bed. PLOS Computational Biology,

9(3):e1002903, March 2013.

[16] M. Goldenberg, A. Felner, R. Stern, G. Sharon, N. Sturtevant, R. C. Holte, and

J. Schaeffer. Enhanced Partial Expansion A*. Journal of Artificial Intelligence

Research, 50:141–187, May 2014.

[17] S. Goss, S. Aron, J. L. Deneubourg, and J. M. Pasteels. Self-organized short-

cuts in the Argentine ant. Naturwissenschaften, 76(12):579–581, December

1989.

[18] Ko hsin Cindy Wang and Adi Botea. Fast and memory-efficient multi-agent

pathfinding. In In ICAPS, pages 380–387, 2008.

46

Bibliography

[19] M. Jansen and Nathan Sturtevant. Direction maps for cooperative pathfind-

ing. page 6, January 2008.

[20] Jackie Kazil, David Masad, and Andrew Crooks. Utilizing python for agent-

based modeling: The mesa framework. In Robert Thomson, Halil Bisgin,

Christopher Dancy, Ayaz Hyder, and Muhammad Hussain, editors, Social,

Cultural, and Behavioral Modeling, pages 308–317, Cham, 2020. Springer

International Publishing.

[21] Mokhtar M Khorshid, Robert C Holte, and Nathan Sturtevant. A Polynomial-

Time Algorithm for Non-Optimal Multi-Agent Pathfinding. page 8, 2011.

[22] Jens Krause and Graeme D. Ruxton. Living in Groups. Oxford Series in Ecol-

ogy and Evolution. Oxford University Press, Oxford ; New York, 2002.

[23] Jiaoyang Li, Wheeler Ruml, and Sven Koenig. EECBS: A Bounded-

Suboptimal Search for Multi-Agent Path Finding. arXiv:2010.01367 [cs],

March 2021.

[24] Ugo Lopez, Jacques Gautrais, Iain D. Couzin, and Guy Theraulaz. From be-

havioural analyses to models of collective motion in fish schools. Interface

Focus, 2(6):693–707, December 2012.

[25] Ryan Luna and Kostas Bekris. Push and Swap: Fast Cooperative Path-

Finding with Completeness Guarantees. In IJCAI International Joint Con-

ference on Artificial Intelligence, pages 294–300, January 2011.

[26] David Masad and Jacqueline Kazil. Mesa: An Agent-Based Modeling Frame-

work. In Python in Science Conference, pages 51–58, Austin, Texas, 2015.

[27] Chris Parker and Hong Zhang. Cooperative Decision-Making in Decen-

tralized Multiple-Robot Systems: The Best-of-N Problem. Mechatronics,

IEEE/ASME Transactions on, 14:240–251, May 2009.

[28] Mike Phillips, Benjamin Cohen, Sachin Chitta, and Maxim Likhachev. E-

Graphs: Bootstrapping Planning with Experience Graphs. page 8, 2012.

[29] Chris R. Reid, Hannelore MacDonald, Richard P. Mann, James A. R. Marshall,

Tanya Latty, and Simon Garnier. Decision-making without a brain: How

an amoeboid organism solves the two-armed bandit. Journal of The Royal

Society Interface, 13(119):20160030, June 2016.

[30] Malcolm Ryan. Constraint-based multi-robot path planning. In 2010 IEEE

International Conference on Robotics and Automation, pages 922–928, An-

chorage, AK, May 2010. IEEE.

47

Bibliography

[31] Alexander Scheidler, Arne Brutschy, Eliseo Ferrante, and Marco Dorigo. The

k-Unanimity Rule for Self-Organized Decision Making in Swarms of Robots.

IEEE Transactions on Cybernetics, 46:1175, May 2016.

[32] Thomas D. Seeley. Honeybee Democracy. Princeton University Press, Prince-

ton, 2010.

[33] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R. Sturtevant. Conflict-

based search for optimal multi-agent pathfinding. Artificial Intelligence,

219:40–66, February 2015.

[34] Guni Sharon, Roni Stern, Meir Goldenberg, and Ariel Felner. The increasing

cost tree search for optimal multi-agent pathfinding. Artificial Intelligence,

195:470–495, February 2013.

[35] David Silver. Cooperative pathfinding. In Proceedings of the First AAAI Con-

ference on Artificial Intelligence and Interactive Digital Entertainment, AI-

IDE’05, page 117–122. AAAI Press, 2005.

[36] Trevor Standley. Finding optimal solutions to cooperative pathfinding prob-

lems. In Proceedings of the Twenty-Fourth AAAI Conference on Artificial In-

telligence, AAAI’10, page 173–178. AAAI Press, 2010.

[37] Roni Stern. Multi-Agent Path Finding – An Overview. In Gennady S. Os-

ipov, Aleksandr I. Panov, and Konstantin S. Yakovlev, editors, Artificial Intel-

ligence: 5th RAAI Summer School, Dolgoprudny, Russia, July 4–7, 2019, Tu-

torial Lectures, Lecture Notes in Computer Science, pages 96–115. Springer

International Publishing, Cham, 2019.

[38] Roni Stern, Nathan Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne

Walker, Jiaoyang Li, Dor Atzmon, Liron Cohen, T. K. Satish Kumar, Eli Bo-

yarski, and Roman Bartak. Multi-Agent Pathfinding: Definitions, Variants,

and Benchmarks. arXiv:1906.08291 [cs], June 2019.

[39] A. Strandburg-Peshkin, D. R. Farine, I. D. Couzin, and M. C. Crofoot. Shared

decision-making drives collective movement in wild baboons. Science,

348(6241):1358–1361, June 2015.

[40] Pavel Surynek. An Optimization Variant of Multi-Robot Path Planning Is

Intractable. Proceedings of the AAAI Conference on Artificial Intelligence,

24(1):1261–1263, July 2010.

48

Bibliography

[41] Pavel Surynek, Ariel Felner, Roni Stern, and Eli Boyarski. Efficient SAT Ap-

proach to Multi-Agent Path Finding Under the Sum of Costs Objective. ECAI

2016, pages 810–818, 2016.

[42] Gabriele Valentini. How robots in a large group make decisions as a

whole? from biological inspiration to the design of distributed algorithms.

arXiv:1910.11262 [nlin, q-bio], December 2019.

[43] Gabriele Valentini, Eliseo Ferrante, and Marco Dorigo. The Best-of-n Prob-

lem in Robot Swarms: Formalization, State of the Art, and Novel Perspec-

tives. Frontiers in Robotics and AI, 4, 2017.

[44] Glenn Wagner and Howie Choset. Subdimensional expansion for multi-

robot path planning. Artificial Intelligence, 219:1–24, February 2015.

[45] Ko-Hsin Cindy Wang and Adi Botea. MAPP: A Scalable Multi-Agent

Path Planning Algorithm with Tractability and Completeness Guarantees.

page 36.

[46] Christopher M. Waters and Bonnie L. Bassler. QUORUM SENSING: Cell-to-

Cell Communication in Bacteria. Annual Review of Cell and Developmental

Biology, 21(1):319–346, November 2005.

[47] Jan Wessnitzer and Chris Melhuish. Collective Decision-Making and Be-

haviour Transitions in Distributed Ad Hoc Wireless Networks of Mobile

Robots: Target-Hunting. In Gerhard Goos, Juris Hartmanis, Jan van

Leeuwen, Wolfgang Banzhaf, Jens Ziegler, Thomas Christaller, Peter Dit-

trich, and Jan T. Kim, editors, Advances in Artificial Life, volume 2801, pages

893–902. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

[48] Jingjin Yu and Steven M. LaValle. Planning optimal paths for multiple robots

on graphs. In 2013 IEEE International Conference on Robotics and Automa-

tion, pages 3612–3617, May 2013.

[49] Jingjin Yu and Steven M. LaValle. Structure and intractability of optimal

multi-robot path planning on graphs. In Proceedings of the Twenty-Seventh

AAAI Conference on Artificial Intelligence, AAAI’13, page 1443–1449. AAAI

Press, 2013.

49

	List of Figures
	List of Tables
	Introduction
	Basic Principles and State of the Art
	Multi-Agent Pathfinding
	Formal Description
	Objective Functions
	Overview of Multi-Agent Pathfinding Solvers
	Highway-Using Approaches

	Collective Decision-Making
	Aggregation Methods
	Collective Decisions in Multi-Agent Systems

	Methodology
	Definitions
	The Algorithm: A*+CCHWY
	Path Planning
	Path Execution

	Experiments
	Implementation
	Problem-Based Benchmark Suite
	Experimental Design
	Experiment 1: Parameter analysis
	Experiment 2: The Algorithm Performance

	Discussion of Results
	Experiment 1: Parameter Analysis
	Experiment 2: The Algorithm Performance

	Conclusion and Outlook
	Bibliography

